基于numa感知的Hessenberg约简算法的自动调优框架

Mahmoud Eljammaly, L. Karlsson, B. Kågström
{"title":"基于numa感知的Hessenberg约简算法的自动调优框架","authors":"Mahmoud Eljammaly, L. Karlsson, B. Kågström","doi":"10.1145/3185768.3186304","DOIUrl":null,"url":null,"abstract":"The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Auto-Tuning Framework for a NUMA-Aware Hessenberg Reduction Algorithm\",\"authors\":\"Mahmoud Eljammaly, L. Karlsson, B. Kågström\",\"doi\":\"10.1145/3185768.3186304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3185768.3186304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近开发的海森伯格约简算法的性能在很大程度上取决于其可调参数的选择值。用通用的方法和工具很难有效地解决这个问题。我们描述了一个模块化的自动调优框架,其中底层的优化算法易于替换。该框架暴露了标准自动调优类型的子问题,现有的泛型方法可以被重用。并发执行子调谐器的输出由框架组装成原始问题的解决方案。本文介绍了正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Auto-Tuning Framework for a NUMA-Aware Hessenberg Reduction Algorithm
The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1