{"title":"基于numa感知的Hessenberg约简算法的自动调优框架","authors":"Mahmoud Eljammaly, L. Karlsson, B. Kågström","doi":"10.1145/3185768.3186304","DOIUrl":null,"url":null,"abstract":"The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Auto-Tuning Framework for a NUMA-Aware Hessenberg Reduction Algorithm\",\"authors\":\"Mahmoud Eljammaly, L. Karlsson, B. Kågström\",\"doi\":\"10.1145/3185768.3186304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3185768.3186304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Auto-Tuning Framework for a NUMA-Aware Hessenberg Reduction Algorithm
The performance of a recently developed Hessenberg reduction algorithm greatly depends on the values chosen for its tunable parameters. The problem is hard to solve effectively with generic methods and tools. We describe a modular auto-tuning framework in which the underlying optimization algorithm is easy to substitute. The framework exposes sub-problems of standard auto-tuning type for which existing generic methods can be reused. The outputs of concurrently executing sub-tuners are assembled by the framework into a solution to the original problem. This paper presents work-in-progress.