一种新颖的锂离子电池在线自适应快速简单充电状态估计方法

Fereshteh Poloei, A. Bakhshai, Yanfei Liu
{"title":"一种新颖的锂离子电池在线自适应快速简单充电状态估计方法","authors":"Fereshteh Poloei, A. Bakhshai, Yanfei Liu","doi":"10.1109/ICRERA.2017.8191193","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel simple adaptive and online approach to estimate the state of charge (SOC) in Lithium Ion (Li-Ion) batteries based on a new model parameter identification method. First, a novel discrete model for the Li-ion battery is developed. This model is the key step in the development of the proposed parameter estimation algorithm. The estimated parameters are used for on-line calculation of the battery's open circuit voltage (VOC) that is required for SOC estimation with no prior knowledge of battery parameters. The paper then proposes a moving window lease mean square approach to adaptively update the estimated parameters in a very fast and accurate manner. The SOC estimation will be updated at the end of every window cycle. The proposed method for SOC estimation provides a simple, fast, comprehensive, and precise estimation capable to track the changes of the model/battery parameters. Unlike other estimation strategies, only battery terminal voltage and current measurements are required.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"40 1","pages":"914-918"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A novel online adaptive fast simple state of charge estimation for Lithium Ion batteries\",\"authors\":\"Fereshteh Poloei, A. Bakhshai, Yanfei Liu\",\"doi\":\"10.1109/ICRERA.2017.8191193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel simple adaptive and online approach to estimate the state of charge (SOC) in Lithium Ion (Li-Ion) batteries based on a new model parameter identification method. First, a novel discrete model for the Li-ion battery is developed. This model is the key step in the development of the proposed parameter estimation algorithm. The estimated parameters are used for on-line calculation of the battery's open circuit voltage (VOC) that is required for SOC estimation with no prior knowledge of battery parameters. The paper then proposes a moving window lease mean square approach to adaptively update the estimated parameters in a very fast and accurate manner. The SOC estimation will be updated at the end of every window cycle. The proposed method for SOC estimation provides a simple, fast, comprehensive, and precise estimation capable to track the changes of the model/battery parameters. Unlike other estimation strategies, only battery terminal voltage and current measurements are required.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"40 1\",\"pages\":\"914-918\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于一种新的模型参数辨识方法,提出了一种新颖、简单、自适应的锂离子电池荷电状态在线估计方法。首先,建立了一种新的锂离子电池离散模型。该模型是所提出的参数估计算法开发的关键步骤。估计的参数用于在线计算电池的开路电压(VOC),这是在没有电池参数先验知识的情况下估计SOC所需的。在此基础上,提出了一种移动窗均方法,可以快速准确地自适应更新估计参数。SOC估计将在每个窗口周期结束时更新。所提出的SOC估算方法提供了一种简单、快速、全面、精确的估算方法,能够跟踪模型/电池参数的变化。与其他估计策略不同,只需要测量电池端子电压和电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel online adaptive fast simple state of charge estimation for Lithium Ion batteries
This paper proposes a novel simple adaptive and online approach to estimate the state of charge (SOC) in Lithium Ion (Li-Ion) batteries based on a new model parameter identification method. First, a novel discrete model for the Li-ion battery is developed. This model is the key step in the development of the proposed parameter estimation algorithm. The estimated parameters are used for on-line calculation of the battery's open circuit voltage (VOC) that is required for SOC estimation with no prior knowledge of battery parameters. The paper then proposes a moving window lease mean square approach to adaptively update the estimated parameters in a very fast and accurate manner. The SOC estimation will be updated at the end of every window cycle. The proposed method for SOC estimation provides a simple, fast, comprehensive, and precise estimation capable to track the changes of the model/battery parameters. Unlike other estimation strategies, only battery terminal voltage and current measurements are required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions Direct load control of air conditioners in Qatar: An empirical study Stochastic unit commitment considering Markov process of wind power forecast Primary and secondary voltage/frequency controller design for energy storage devices using consensus theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1