Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee
{"title":"直接梯度计算:简单和变化容忍芯片上的神经网络训练方法","authors":"Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee","doi":"10.1002/aisy.202100064","DOIUrl":null,"url":null,"abstract":"On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct Gradient Calculation: Simple and Variation‐Tolerant On‐Chip Training Method for Neural Networks\",\"authors\":\"Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee\",\"doi\":\"10.1002/aisy.202100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct Gradient Calculation: Simple and Variation‐Tolerant On‐Chip Training Method for Neural Networks
On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.