挤压法制备脂质体纳米载体促进紫杉醇肿瘤蓄积

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Bioactive and Compatible Polymers Pub Date : 2021-11-05 DOI:10.1177/08839115211053926
Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran
{"title":"挤压法制备脂质体纳米载体促进紫杉醇肿瘤蓄积","authors":"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran","doi":"10.1177/08839115211053926","DOIUrl":null,"url":null,"abstract":"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"20 1","pages":"3 - 16"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel\",\"authors\":\"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran\",\"doi\":\"10.1177/08839115211053926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"20 1\",\"pages\":\"3 - 16\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115211053926\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115211053926","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

紫杉醇(PTX)具有广谱、有效的抗癌活性,但其低溶解度和副作用是其临床应用的主要挑战。本研究合成了一种紫杉醇包封纳米脂质体(NLips-PTX)载体模型,以增强PTX的溶解度,增加其在肿瘤部位的被动蓄积。以大豆卵磷脂与胆固醇的比例为9:1,采用薄膜水化后挤压法制备纳米脂质体。制备的球形NLips-PTX脂质体平均粒径约为150 nm,均匀度高,通过DLS和TEM对其进行了表征。高效液相色谱法测定NLips的PTX负载效率约为85%。通过体外细胞摄取和细胞毒性研究,NLips-PTX对乳腺癌细胞(MCF-7)也显示出剂量和时间依赖性的治疗效果。该研究表明,挤压是一种简单方便的纳米化和均质脂质体悬浮液的方法,可以有效地将药物输送到目标肿瘤部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel
Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Textile waste-based biosensors for medical monitoring Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies Sport technology in combination with neural guidance channels loaded with Inula helenium extract for peripheral nervous system repair Dual drug release profiles of salicylate-based polymers and encapsulated chlorhexidine as potential periodontitis treatments Synthesis of pH-sensitive polymeric micelle drug carries for potential cancer chemotherapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1