利用复杂网络进行轨迹数据分析

Igo Ramalho Brilhante, J. Macêdo, C. Renso, M. Casanova
{"title":"利用复杂网络进行轨迹数据分析","authors":"Igo Ramalho Brilhante, J. Macêdo, C. Renso, M. Casanova","doi":"10.1145/2076623.2076627","DOIUrl":null,"url":null,"abstract":"A massive amount of data on moving object trajectories is available today. However, it is still a major challenge to process such information in order to explain moving object interactions, which could help in revealing non-trivial behavioral patterns. To that end, we consider a complex networks-based representation of trajectory data. Frequent encounters among moving objects (trajectory encounters) are used to create the network edges whereas nodes represent trajectories. A real trajectory dataset of vehicles moving within the City of Milan allows us to study the structure of vehicle interactions and validate our method. We create seven networks and compute the clustering coefficient, and the average shortest path length comparing them with those of the Erdős-Rényi model. Our analysis shows that all computed trajectory networks have the small world effect and the scale-free feature similar to the internet and biological networks. Finally, we discuss how these results could be interpreted in the light of the traffic application domain.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"18 1","pages":"17-25"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Trajectory data analysis using complex networks\",\"authors\":\"Igo Ramalho Brilhante, J. Macêdo, C. Renso, M. Casanova\",\"doi\":\"10.1145/2076623.2076627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A massive amount of data on moving object trajectories is available today. However, it is still a major challenge to process such information in order to explain moving object interactions, which could help in revealing non-trivial behavioral patterns. To that end, we consider a complex networks-based representation of trajectory data. Frequent encounters among moving objects (trajectory encounters) are used to create the network edges whereas nodes represent trajectories. A real trajectory dataset of vehicles moving within the City of Milan allows us to study the structure of vehicle interactions and validate our method. We create seven networks and compute the clustering coefficient, and the average shortest path length comparing them with those of the Erdős-Rényi model. Our analysis shows that all computed trajectory networks have the small world effect and the scale-free feature similar to the internet and biological networks. Finally, we discuss how these results could be interpreted in the light of the traffic application domain.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"18 1\",\"pages\":\"17-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2076623.2076627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

现在有大量关于移动物体轨迹的数据。然而,为了解释移动物体的相互作用,处理这些信息仍然是一个主要的挑战,这可能有助于揭示重要的行为模式。为此,我们考虑了基于复杂网络的轨迹数据表示。移动对象之间的频繁相遇(轨迹相遇)用于创建网络边缘,而节点表示轨迹。在米兰市内移动的车辆的真实轨迹数据集允许我们研究车辆相互作用的结构并验证我们的方法。我们创建了七个网络,并计算了聚类系数,并将它们与Erdős-Rényi模型的平均最短路径长度进行了比较。我们的分析表明,所有计算轨迹网络都具有类似于互联网和生物网络的小世界效应和无标度特征。最后,我们讨论了如何根据交通应用领域来解释这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory data analysis using complex networks
A massive amount of data on moving object trajectories is available today. However, it is still a major challenge to process such information in order to explain moving object interactions, which could help in revealing non-trivial behavioral patterns. To that end, we consider a complex networks-based representation of trajectory data. Frequent encounters among moving objects (trajectory encounters) are used to create the network edges whereas nodes represent trajectories. A real trajectory dataset of vehicles moving within the City of Milan allows us to study the structure of vehicle interactions and validate our method. We create seven networks and compute the clustering coefficient, and the average shortest path length comparing them with those of the Erdős-Rényi model. Our analysis shows that all computed trajectory networks have the small world effect and the scale-free feature similar to the internet and biological networks. Finally, we discuss how these results could be interpreted in the light of the traffic application domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1