L. Nhung, T. T. Phung, H. Nguyen, T. N. Le, T. A. Nguyen, T. D. Vo
{"title":"基于双神经网络和AHP算法的微电网减载研究","authors":"L. Nhung, T. T. Phung, H. Nguyen, T. N. Le, T. A. Nguyen, T. D. Vo","doi":"10.48084/etasr.4652","DOIUrl":null,"url":null,"abstract":"This paper proposes a new load shedding method based on the application of a Dual Neural Network (NN). The combination of a Back-Propagation Neural Network (BPNN) and of Particle Swarm Optimization (PSO) aims to quickly predict and propose a load shedding strategy when a fault occurs in the microgrid (MG) system. The PSO algorithm has the ability to search and compare multiple points, so the proposed NN training method helps determine the link weights faster and stronger. As a result, the proposed method saves training time and achieves higher accuracy. The Analytic Hierarchy Process (AHP) algorithm is applied to rank the loads based on their importance factor. The results of the ratings of the loads serve as a basis for constructing the load shedding strategies of a NN combined with the PSO algorithm (ANN-PSO). The proposed load shedding method is tested on an IEEE 25-bus 8-generator MG power system. The simulation results show that the frequency recovery of the power system is positive. The proposed neural network adapts well to the simulated data of the system and achieves high performance in fault prediction.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"205 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Load Shedding in Microgrids with Dual Neural Networks and AHP Algorithm\",\"authors\":\"L. Nhung, T. T. Phung, H. Nguyen, T. N. Le, T. A. Nguyen, T. D. Vo\",\"doi\":\"10.48084/etasr.4652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new load shedding method based on the application of a Dual Neural Network (NN). The combination of a Back-Propagation Neural Network (BPNN) and of Particle Swarm Optimization (PSO) aims to quickly predict and propose a load shedding strategy when a fault occurs in the microgrid (MG) system. The PSO algorithm has the ability to search and compare multiple points, so the proposed NN training method helps determine the link weights faster and stronger. As a result, the proposed method saves training time and achieves higher accuracy. The Analytic Hierarchy Process (AHP) algorithm is applied to rank the loads based on their importance factor. The results of the ratings of the loads serve as a basis for constructing the load shedding strategies of a NN combined with the PSO algorithm (ANN-PSO). The proposed load shedding method is tested on an IEEE 25-bus 8-generator MG power system. The simulation results show that the frequency recovery of the power system is positive. The proposed neural network adapts well to the simulated data of the system and achieves high performance in fault prediction.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.4652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Load Shedding in Microgrids with Dual Neural Networks and AHP Algorithm
This paper proposes a new load shedding method based on the application of a Dual Neural Network (NN). The combination of a Back-Propagation Neural Network (BPNN) and of Particle Swarm Optimization (PSO) aims to quickly predict and propose a load shedding strategy when a fault occurs in the microgrid (MG) system. The PSO algorithm has the ability to search and compare multiple points, so the proposed NN training method helps determine the link weights faster and stronger. As a result, the proposed method saves training time and achieves higher accuracy. The Analytic Hierarchy Process (AHP) algorithm is applied to rank the loads based on their importance factor. The results of the ratings of the loads serve as a basis for constructing the load shedding strategies of a NN combined with the PSO algorithm (ANN-PSO). The proposed load shedding method is tested on an IEEE 25-bus 8-generator MG power system. The simulation results show that the frequency recovery of the power system is positive. The proposed neural network adapts well to the simulated data of the system and achieves high performance in fault prediction.