太阳资源可变性对高温粒子接收器启动时间和损耗预测的不确定性

M. Rafique, G. Nathan, W. Saw
{"title":"太阳资源可变性对高温粒子接收器启动时间和损耗预测的不确定性","authors":"M. Rafique, G. Nathan, W. Saw","doi":"10.1115/es2020-1649","DOIUrl":null,"url":null,"abstract":"\n In this paper, the effect of solar resource variability has been assessed on the start-up time and different heat transfer phenomena associated with a high temperature particle receiver. The receiver analyzed in this study has a cylindrical cavity made of three different layers in order to have good absorption, higher durability and lower thermal heat losses. A detailed transient mathematical model is developed, considering the input solar energy to the receiver aperture and all heat losses from the receiver cavity. The developed transient model is employed to study the time required to achieve a receiver start-up temperature from room temperature to 1000°C, under steady-state and transient operation, for the climatic conditions of Pinjarra, Australia. Furthermore, the total energy gain by the receiver and associated heat losses including re-radiation, convection, and conduction have been accounted for, with and without considering the solar resource variability. The results revealed that an uncertainty of about 40% exists in the prediction of the receiver start-up time and associated heat losses during the start-up period under steady state operation, with a constant input heat flux. This uncertainty in the prediction of the receiver start-up time and losses will directly affect the overall performance and design of the receiver, which will result in unscheduled disruption of the industrial process. This indicates a need to analyse the performance of high temperature particle receivers under transient conditions, considering the solar resource variability for practical implementation of this technology to different processes. This will help to investigate better control strategies for the inflow of particles, based on the real-time climatic conditions, to achieve better thermal performance.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uncertainty in Predicting the Start-Up Time and Losses for a High Temperature Particle Receiver due to Solar Resource Variability\",\"authors\":\"M. Rafique, G. Nathan, W. Saw\",\"doi\":\"10.1115/es2020-1649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the effect of solar resource variability has been assessed on the start-up time and different heat transfer phenomena associated with a high temperature particle receiver. The receiver analyzed in this study has a cylindrical cavity made of three different layers in order to have good absorption, higher durability and lower thermal heat losses. A detailed transient mathematical model is developed, considering the input solar energy to the receiver aperture and all heat losses from the receiver cavity. The developed transient model is employed to study the time required to achieve a receiver start-up temperature from room temperature to 1000°C, under steady-state and transient operation, for the climatic conditions of Pinjarra, Australia. Furthermore, the total energy gain by the receiver and associated heat losses including re-radiation, convection, and conduction have been accounted for, with and without considering the solar resource variability. The results revealed that an uncertainty of about 40% exists in the prediction of the receiver start-up time and associated heat losses during the start-up period under steady state operation, with a constant input heat flux. This uncertainty in the prediction of the receiver start-up time and losses will directly affect the overall performance and design of the receiver, which will result in unscheduled disruption of the industrial process. This indicates a need to analyse the performance of high temperature particle receivers under transient conditions, considering the solar resource variability for practical implementation of this technology to different processes. This will help to investigate better control strategies for the inflow of particles, based on the real-time climatic conditions, to achieve better thermal performance.\",\"PeriodicalId\":8602,\"journal\":{\"name\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2020-1649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文评估了太阳能资源变率对高温粒子接收器启动时间和不同传热现象的影响。为了具有良好的吸收率,更高的耐用性和更低的热损失,本研究分析的接收器具有三层不同的圆柱形腔。建立了一个详细的瞬态数学模型,考虑了输入到接收器孔径的太阳能和接收腔的所有热损失。利用所建立的瞬态模型,研究了澳大利亚Pinjarra气候条件下,在稳态和瞬态工况下,接收机从室温到1000℃的启动温度所需的时间。此外,在考虑或不考虑太阳资源变率的情况下,已经考虑了接收器的总能量增益和相关的热损失,包括再辐射、对流和传导。结果表明,在恒定输入热通量的稳态运行条件下,对启动时间和启动期间相关热损失的预测存在约40%的不确定性。这种对接收机启动时间和损耗预测的不确定性将直接影响接收机的整体性能和设计,从而导致工业过程的计划外中断。这表明需要分析高温粒子接收器在瞬态条件下的性能,考虑到太阳能资源的可变性,以实际实施该技术到不同的过程。这将有助于根据实时气候条件研究更好的颗粒流入控制策略,以实现更好的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty in Predicting the Start-Up Time and Losses for a High Temperature Particle Receiver due to Solar Resource Variability
In this paper, the effect of solar resource variability has been assessed on the start-up time and different heat transfer phenomena associated with a high temperature particle receiver. The receiver analyzed in this study has a cylindrical cavity made of three different layers in order to have good absorption, higher durability and lower thermal heat losses. A detailed transient mathematical model is developed, considering the input solar energy to the receiver aperture and all heat losses from the receiver cavity. The developed transient model is employed to study the time required to achieve a receiver start-up temperature from room temperature to 1000°C, under steady-state and transient operation, for the climatic conditions of Pinjarra, Australia. Furthermore, the total energy gain by the receiver and associated heat losses including re-radiation, convection, and conduction have been accounted for, with and without considering the solar resource variability. The results revealed that an uncertainty of about 40% exists in the prediction of the receiver start-up time and associated heat losses during the start-up period under steady state operation, with a constant input heat flux. This uncertainty in the prediction of the receiver start-up time and losses will directly affect the overall performance and design of the receiver, which will result in unscheduled disruption of the industrial process. This indicates a need to analyse the performance of high temperature particle receivers under transient conditions, considering the solar resource variability for practical implementation of this technology to different processes. This will help to investigate better control strategies for the inflow of particles, based on the real-time climatic conditions, to achieve better thermal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Study of the Puna Geothermal Power Plant and Proposed Retrofit H2S Gas Mitigation Strategies Evaluating the Effective Solar Absorptance of Dilute Particle Configurations Use of Silica Coated Zinc Nanoparticles for Enhancement in Thermal Properties of Carbonate Eutectic Salt for Concentrated Solar Power Plants High-Temperature Thermophysical Property Measurement of Proposed Gen3 CSP Containment Materials Update on NREL Outdoor Exposure Campaign of Solar Mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1