{"title":"射电脉冲星信号的几何结构:脉动模式的起源和消零","authors":"J. Dyks","doi":"10.1051/0004-6361/202141243","DOIUrl":null,"url":null,"abstract":"Radio pulsars exhibit an enormous diversity of single pulse behaviour that involves sudden changes in pulsation mode and nulling occurring on timescales of tens or hundreds of spin periods. The pulsations appear both chaotic and quasi-regular, which has hampered their interpretation for decades. Here I show that the pseudo-chaotic complexity of single pulses is caused by the viewing of a relatively simple radio beam that has a sector structure traceable to the magnetospheric charge distribution. The slow ExB drift of the sector beam, when sampled by the line of sight, produces the classical drift-period-folded patterns known from observations. The drifting azimuthal zones of the beam produce the changes in pulsation modes and both the intermodal and sporadic nulling at timescales of beating between the drift and the star spin. The axially symmetric conal beams are thus a superficial geometric illusion, and the standard carousel model of pulsar radio beams does not apply. The beam suggests a particle flow structure that involves inward motions with possible inward emission.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"5 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of radio pulsar signals: The origin of pulsation modes and nulling\",\"authors\":\"J. Dyks\",\"doi\":\"10.1051/0004-6361/202141243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio pulsars exhibit an enormous diversity of single pulse behaviour that involves sudden changes in pulsation mode and nulling occurring on timescales of tens or hundreds of spin periods. The pulsations appear both chaotic and quasi-regular, which has hampered their interpretation for decades. Here I show that the pseudo-chaotic complexity of single pulses is caused by the viewing of a relatively simple radio beam that has a sector structure traceable to the magnetospheric charge distribution. The slow ExB drift of the sector beam, when sampled by the line of sight, produces the classical drift-period-folded patterns known from observations. The drifting azimuthal zones of the beam produce the changes in pulsation modes and both the intermodal and sporadic nulling at timescales of beating between the drift and the star spin. The axially symmetric conal beams are thus a superficial geometric illusion, and the standard carousel model of pulsar radio beams does not apply. The beam suggests a particle flow structure that involves inward motions with possible inward emission.\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202141243\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/0004-6361/202141243","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Geometry of radio pulsar signals: The origin of pulsation modes and nulling
Radio pulsars exhibit an enormous diversity of single pulse behaviour that involves sudden changes in pulsation mode and nulling occurring on timescales of tens or hundreds of spin periods. The pulsations appear both chaotic and quasi-regular, which has hampered their interpretation for decades. Here I show that the pseudo-chaotic complexity of single pulses is caused by the viewing of a relatively simple radio beam that has a sector structure traceable to the magnetospheric charge distribution. The slow ExB drift of the sector beam, when sampled by the line of sight, produces the classical drift-period-folded patterns known from observations. The drifting azimuthal zones of the beam produce the changes in pulsation modes and both the intermodal and sporadic nulling at timescales of beating between the drift and the star spin. The axially symmetric conal beams are thus a superficial geometric illusion, and the standard carousel model of pulsar radio beams does not apply. The beam suggests a particle flow structure that involves inward motions with possible inward emission.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.