健壮的,可扩展的,实时事件时间序列聚合在Twitter上

Peilin Yang, S. Thiagarajan, Jimmy J. Lin
{"title":"健壮的,可扩展的,实时事件时间序列聚合在Twitter上","authors":"Peilin Yang, S. Thiagarajan, Jimmy J. Lin","doi":"10.1145/3183713.3190663","DOIUrl":null,"url":null,"abstract":"Twitter's data engineering team is faced with the challenge of processing billions of events every day in batch and in real time, and we have built various tools to meet these demands. In this paper, we describe TSAR (TimeSeries AggregatoR), a robust, scalable, real-time event time series aggregation framework built primarily for engagement monitoring: aggregating interactions with Tweets, segmented along a multitude of dimensions such as device, engagement type, etc. TSAR is built on top of Summingbird, an open-source framework for integrating batch and online MapReduce computations, and removes much of the tedium associated with building end-to-end aggregation pipelines---from the ingestion and processing of events to the publication of results in heterogeneous datastores. Clients are provided a query interface that powers dashboards and supports downstream ad hoc analytics.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust, Scalable, Real-Time Event Time Series Aggregation at Twitter\",\"authors\":\"Peilin Yang, S. Thiagarajan, Jimmy J. Lin\",\"doi\":\"10.1145/3183713.3190663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter's data engineering team is faced with the challenge of processing billions of events every day in batch and in real time, and we have built various tools to meet these demands. In this paper, we describe TSAR (TimeSeries AggregatoR), a robust, scalable, real-time event time series aggregation framework built primarily for engagement monitoring: aggregating interactions with Tweets, segmented along a multitude of dimensions such as device, engagement type, etc. TSAR is built on top of Summingbird, an open-source framework for integrating batch and online MapReduce computations, and removes much of the tedium associated with building end-to-end aggregation pipelines---from the ingestion and processing of events to the publication of results in heterogeneous datastores. Clients are provided a query interface that powers dashboards and supports downstream ad hoc analytics.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3190663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3190663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Twitter的数据工程团队面临着每天批量实时处理数十亿个事件的挑战,我们已经构建了各种工具来满足这些需求。在本文中,我们描述了TSAR (TimeSeries AggregatoR),这是一个鲁棒的、可扩展的、实时的事件时间序列聚合框架,主要用于参与度监测:聚合与tweet的交互,沿着多个维度(如设备、参与度类型等)进行分割。TSAR建立在Summingbird之上,Summingbird是一个用于集成批处理和在线MapReduce计算的开源框架,它消除了与构建端到端聚合管道相关的许多单调乏味的工作——从事件的摄取和处理到在异构数据存储中发布结果。为客户端提供了一个查询接口,该接口为仪表板提供动力,并支持下游临时分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust, Scalable, Real-Time Event Time Series Aggregation at Twitter
Twitter's data engineering team is faced with the challenge of processing billions of events every day in batch and in real time, and we have built various tools to meet these demands. In this paper, we describe TSAR (TimeSeries AggregatoR), a robust, scalable, real-time event time series aggregation framework built primarily for engagement monitoring: aggregating interactions with Tweets, segmented along a multitude of dimensions such as device, engagement type, etc. TSAR is built on top of Summingbird, an open-source framework for integrating batch and online MapReduce computations, and removes much of the tedium associated with building end-to-end aggregation pipelines---from the ingestion and processing of events to the publication of results in heterogeneous datastores. Clients are provided a query interface that powers dashboards and supports downstream ad hoc analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1