M. Murphy, N. Upadhyay, Munsaf Ali, James V. Passarelli, Jodi Grzeskowiak, Maximillian Weires, R. Brainard
{"title":"锑极紫外光刻胶中的可聚合烯烃基团","authors":"M. Murphy, N. Upadhyay, Munsaf Ali, James V. Passarelli, Jodi Grzeskowiak, Maximillian Weires, R. Brainard","doi":"10.2494/photopolymer.34.117","DOIUrl":null,"url":null,"abstract":"Many antimony-carboxylate complexes containing polymerizable olefins are highly sensitive EUV photoresists. Herein we report two approaches by which we explored the reactivity of polymerizable olefin antimony carboxylate photoresists to improve lithographic performance. First, we explored the effect of replacing three phenyl groups with methyl groups in an effort to increase the relative concentration of olefins vs. size of the molecule. Second, we explored the effect of increasing the number of polymerizable olefins from two to five. This approach examines the use of tris(4-vinylphenyl)antimony-dicarboxylate complexes as photoresists and the developer chemistry capable of patterning highly crosslinked substrates.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymerizable Olefins Groups in Antimony EUV Photoresists\",\"authors\":\"M. Murphy, N. Upadhyay, Munsaf Ali, James V. Passarelli, Jodi Grzeskowiak, Maximillian Weires, R. Brainard\",\"doi\":\"10.2494/photopolymer.34.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many antimony-carboxylate complexes containing polymerizable olefins are highly sensitive EUV photoresists. Herein we report two approaches by which we explored the reactivity of polymerizable olefin antimony carboxylate photoresists to improve lithographic performance. First, we explored the effect of replacing three phenyl groups with methyl groups in an effort to increase the relative concentration of olefins vs. size of the molecule. Second, we explored the effect of increasing the number of polymerizable olefins from two to five. This approach examines the use of tris(4-vinylphenyl)antimony-dicarboxylate complexes as photoresists and the developer chemistry capable of patterning highly crosslinked substrates.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2494/photopolymer.34.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2494/photopolymer.34.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymerizable Olefins Groups in Antimony EUV Photoresists
Many antimony-carboxylate complexes containing polymerizable olefins are highly sensitive EUV photoresists. Herein we report two approaches by which we explored the reactivity of polymerizable olefin antimony carboxylate photoresists to improve lithographic performance. First, we explored the effect of replacing three phenyl groups with methyl groups in an effort to increase the relative concentration of olefins vs. size of the molecule. Second, we explored the effect of increasing the number of polymerizable olefins from two to five. This approach examines the use of tris(4-vinylphenyl)antimony-dicarboxylate complexes as photoresists and the developer chemistry capable of patterning highly crosslinked substrates.