从全幻灯片图像预测三阴性乳腺癌的治疗反应

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in signal processing Pub Date : 2022-06-22 DOI:10.3389/frsip.2022.851809
Peter Naylor, Tristan Lazard, G. Bataillon, M. Laé, A. Vincent-Salomon, A. Hamy, F. Reyal, Thomas Walter
{"title":"从全幻灯片图像预测三阴性乳腺癌的治疗反应","authors":"Peter Naylor, Tristan Lazard, G. Bataillon, M. Laé, A. Vincent-Salomon, A. Hamy, F. Reyal, Thomas Walter","doi":"10.3389/frsip.2022.851809","DOIUrl":null,"url":null,"abstract":"The automatic analysis of stained histological sections is becoming increasingly popular. Deep Learning is today the method of choice for the computational analysis of such data, and has shown spectacular results for large datasets for a large variety of cancer types and prediction tasks. On the other hand, many scientific questions relate to small, highly specific cohorts. Such cohorts pose serious challenges for Deep Learning, typically trained on large datasets. In this article, we propose a modification of the standard nested cross-validation procedure for hyperparameter tuning and model selection, dedicated to the analysis of small cohorts. We also propose a new architecture for the particularly challenging question of treatment prediction, and apply this workflow to the prediction of response to neoadjuvant chemotherapy for Triple Negative Breast Cancer.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of Treatment Response in Triple Negative Breast Cancer From Whole Slide Images\",\"authors\":\"Peter Naylor, Tristan Lazard, G. Bataillon, M. Laé, A. Vincent-Salomon, A. Hamy, F. Reyal, Thomas Walter\",\"doi\":\"10.3389/frsip.2022.851809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic analysis of stained histological sections is becoming increasingly popular. Deep Learning is today the method of choice for the computational analysis of such data, and has shown spectacular results for large datasets for a large variety of cancer types and prediction tasks. On the other hand, many scientific questions relate to small, highly specific cohorts. Such cohorts pose serious challenges for Deep Learning, typically trained on large datasets. In this article, we propose a modification of the standard nested cross-validation procedure for hyperparameter tuning and model selection, dedicated to the analysis of small cohorts. We also propose a new architecture for the particularly challenging question of treatment prediction, and apply this workflow to the prediction of response to neoadjuvant chemotherapy for Triple Negative Breast Cancer.\",\"PeriodicalId\":93557,\"journal\":{\"name\":\"Frontiers in signal processing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsip.2022.851809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2022.851809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

染色组织切片的自动分析正变得越来越流行。深度学习是当今对此类数据进行计算分析的首选方法,并在用于各种癌症类型和预测任务的大型数据集上显示出惊人的结果。另一方面,许多科学问题与小的、高度特定的群体有关。这样的群体对深度学习构成了严峻的挑战,深度学习通常是在大数据集上训练的。在本文中,我们提出了对标准嵌套交叉验证程序的修改,用于超参数调整和模型选择,专门用于小队列的分析。我们还为治疗预测这一特别具有挑战性的问题提出了一个新的架构,并将该工作流程应用于三阴性乳腺癌新辅助化疗反应的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Treatment Response in Triple Negative Breast Cancer From Whole Slide Images
The automatic analysis of stained histological sections is becoming increasingly popular. Deep Learning is today the method of choice for the computational analysis of such data, and has shown spectacular results for large datasets for a large variety of cancer types and prediction tasks. On the other hand, many scientific questions relate to small, highly specific cohorts. Such cohorts pose serious challenges for Deep Learning, typically trained on large datasets. In this article, we propose a modification of the standard nested cross-validation procedure for hyperparameter tuning and model selection, dedicated to the analysis of small cohorts. We also propose a new architecture for the particularly challenging question of treatment prediction, and apply this workflow to the prediction of response to neoadjuvant chemotherapy for Triple Negative Breast Cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mini-review of signal processing techniques for RIS-assisted near field THz communication Editorial: Signal processing in computational video and video streaming Editorial: Editor’s challenge—image processing Improved circuitry and post-processing for interleaved fast-scan cyclic voltammetry and electrophysiology measurements Bounds for Haralick features in synthetic images with sinusoidal gradients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1