{"title":"钢渣替代粗、细骨料在混凝土中的力学性能评价","authors":"B. Pushpakumara, Ttd Silva","doi":"10.1080/13287982.2023.2167644","DOIUrl":null,"url":null,"abstract":"ABSTRACT Steel slag is a melted by-product that mainly consists of calcium carbonate and metal oxides generated in the process of steel manufacturing. The main objectives of this study are to evaluate the effectiveness of steel slags as fine and coarse aggregates in concrete and to determine the optimum quantity of steel slag as fine and coarse aggregates to enhance the strength of concrete. Concrete cubes were cast by mixing steel slag as replacement (i.e. 0%, 10%, 25%, 50%, 75% and 100%) for fine and coarse aggregate, separately. Abrasion test, sieve analysis, water absorption and specific gravity test were conducted to determine the properties of raw materials. Unit weight, workability, compressive strength, splitting tensile strength and the possibility of corrosion were experimentally evaluated to determine the effectiveness of steel slag. It is found that 75% steel slag mixed concrete indicates improvements in compressive strength, splitting tensile strength and unit weight, respectively. Further, it was noted that steel slag aggregates were not corroded after conducting the Accelerated Corrosion Test Method (ACTM). Therefore, the use of steel slag as fine and coarse aggregates for concrete would improve the mechanical properties of concrete and reduce the adverse environmental impact.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of mechanical properties of steel slag as replacement for fine and coarse aggregate in concrete\",\"authors\":\"B. Pushpakumara, Ttd Silva\",\"doi\":\"10.1080/13287982.2023.2167644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Steel slag is a melted by-product that mainly consists of calcium carbonate and metal oxides generated in the process of steel manufacturing. The main objectives of this study are to evaluate the effectiveness of steel slags as fine and coarse aggregates in concrete and to determine the optimum quantity of steel slag as fine and coarse aggregates to enhance the strength of concrete. Concrete cubes were cast by mixing steel slag as replacement (i.e. 0%, 10%, 25%, 50%, 75% and 100%) for fine and coarse aggregate, separately. Abrasion test, sieve analysis, water absorption and specific gravity test were conducted to determine the properties of raw materials. Unit weight, workability, compressive strength, splitting tensile strength and the possibility of corrosion were experimentally evaluated to determine the effectiveness of steel slag. It is found that 75% steel slag mixed concrete indicates improvements in compressive strength, splitting tensile strength and unit weight, respectively. Further, it was noted that steel slag aggregates were not corroded after conducting the Accelerated Corrosion Test Method (ACTM). Therefore, the use of steel slag as fine and coarse aggregates for concrete would improve the mechanical properties of concrete and reduce the adverse environmental impact.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2023.2167644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2023.2167644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Evaluation of mechanical properties of steel slag as replacement for fine and coarse aggregate in concrete
ABSTRACT Steel slag is a melted by-product that mainly consists of calcium carbonate and metal oxides generated in the process of steel manufacturing. The main objectives of this study are to evaluate the effectiveness of steel slags as fine and coarse aggregates in concrete and to determine the optimum quantity of steel slag as fine and coarse aggregates to enhance the strength of concrete. Concrete cubes were cast by mixing steel slag as replacement (i.e. 0%, 10%, 25%, 50%, 75% and 100%) for fine and coarse aggregate, separately. Abrasion test, sieve analysis, water absorption and specific gravity test were conducted to determine the properties of raw materials. Unit weight, workability, compressive strength, splitting tensile strength and the possibility of corrosion were experimentally evaluated to determine the effectiveness of steel slag. It is found that 75% steel slag mixed concrete indicates improvements in compressive strength, splitting tensile strength and unit weight, respectively. Further, it was noted that steel slag aggregates were not corroded after conducting the Accelerated Corrosion Test Method (ACTM). Therefore, the use of steel slag as fine and coarse aggregates for concrete would improve the mechanical properties of concrete and reduce the adverse environmental impact.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.