{"title":"用于储能的e²类双向变换器的闭环自适应频移相控制","authors":"Kamlesh Sawant, Jungwon Choi","doi":"10.1109/COMPEL52896.2023.10221002","DOIUrl":null,"url":null,"abstract":"This paper presents discrete frequency and phase-shift control for a bidirectional class-E2 converter, enabling a wide range of output power in energy storage applications. Class-E² converters typically operate within a narrow power range to achieve zero voltage switching (ZVS) across the switching devices and ensure high efficiency. To address this limitation, we propose an adaptive frequency control algorithm that utilizes multiple frequency steps to reduce output ripple and minimize output capacitor requirements. Our adaptive frequency control algorithm ensures high efficiency across a wide output power range by using 16 discrete switching frequency steps ranging from 800 kHz to 1.6 MHz. Duty ratios are pre-computed and stored in a lookup table to provide ZVS at each frequency. We also apply a variable phase shift between the switching devices to maintain ZVS and control the power flow direction. By directly selecting and applying the appropriate frequency from the lookup table instead of sequential searching, our proposed algorithm enables faster dynamic response with minimal undershoot and overshoot. Through simulation and implementation of closed-loop control of the bidirectional class-E2 converter prototype using an MCU, we achieved bidirectional output power level variation from 13 W to 350 W with a maximum efficiency of 93.5%.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"2 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-Loop Adaptive Frequency and Phase-Shift Control of Bidirectional Class-E² Converter for Energy Storage Applications\",\"authors\":\"Kamlesh Sawant, Jungwon Choi\",\"doi\":\"10.1109/COMPEL52896.2023.10221002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents discrete frequency and phase-shift control for a bidirectional class-E2 converter, enabling a wide range of output power in energy storage applications. Class-E² converters typically operate within a narrow power range to achieve zero voltage switching (ZVS) across the switching devices and ensure high efficiency. To address this limitation, we propose an adaptive frequency control algorithm that utilizes multiple frequency steps to reduce output ripple and minimize output capacitor requirements. Our adaptive frequency control algorithm ensures high efficiency across a wide output power range by using 16 discrete switching frequency steps ranging from 800 kHz to 1.6 MHz. Duty ratios are pre-computed and stored in a lookup table to provide ZVS at each frequency. We also apply a variable phase shift between the switching devices to maintain ZVS and control the power flow direction. By directly selecting and applying the appropriate frequency from the lookup table instead of sequential searching, our proposed algorithm enables faster dynamic response with minimal undershoot and overshoot. Through simulation and implementation of closed-loop control of the bidirectional class-E2 converter prototype using an MCU, we achieved bidirectional output power level variation from 13 W to 350 W with a maximum efficiency of 93.5%.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"2 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10221002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Closed-Loop Adaptive Frequency and Phase-Shift Control of Bidirectional Class-E² Converter for Energy Storage Applications
This paper presents discrete frequency and phase-shift control for a bidirectional class-E2 converter, enabling a wide range of output power in energy storage applications. Class-E² converters typically operate within a narrow power range to achieve zero voltage switching (ZVS) across the switching devices and ensure high efficiency. To address this limitation, we propose an adaptive frequency control algorithm that utilizes multiple frequency steps to reduce output ripple and minimize output capacitor requirements. Our adaptive frequency control algorithm ensures high efficiency across a wide output power range by using 16 discrete switching frequency steps ranging from 800 kHz to 1.6 MHz. Duty ratios are pre-computed and stored in a lookup table to provide ZVS at each frequency. We also apply a variable phase shift between the switching devices to maintain ZVS and control the power flow direction. By directly selecting and applying the appropriate frequency from the lookup table instead of sequential searching, our proposed algorithm enables faster dynamic response with minimal undershoot and overshoot. Through simulation and implementation of closed-loop control of the bidirectional class-E2 converter prototype using an MCU, we achieved bidirectional output power level variation from 13 W to 350 W with a maximum efficiency of 93.5%.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.