{"title":"基于热电压变换器和Swerlein算法标定的高分辨率数字化仪交流幅值测量特性","authors":"J. Konjevod, R. Malarić, P. Mostarac, M. Jurčević","doi":"10.1109/I2MTC50364.2021.9459912","DOIUrl":null,"url":null,"abstract":"An automated test and calibration system based on a planar multijunction thermal voltage converter and a modular electronic instrumentation platform has been developed. Proposed measurement and calibration technique can be used to characterize ac amplitude measurement characteristics of high-resolution (24-bit) ADC based sampling devices and has been tested up to 100 kHz. Especially, a two-channel high-speed, high-resolution oscilloscope device has been internally self-calibrated and extensively characterized in the frequency range of 50 Hz-100 kHz. Furthermore, two ADCs, i.e. NI PXI 5922 and NI PXI 4461 have been compared with reference standard (Swerlein algorithm) to investigate their precision in rms amplitude measurement of ac signals.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"1981 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The AC Amplitude Measurement Characteristics of High-resolution Digitizers based on Calibration with Thermal Voltage Converter and Swerlein Algorithm\",\"authors\":\"J. Konjevod, R. Malarić, P. Mostarac, M. Jurčević\",\"doi\":\"10.1109/I2MTC50364.2021.9459912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automated test and calibration system based on a planar multijunction thermal voltage converter and a modular electronic instrumentation platform has been developed. Proposed measurement and calibration technique can be used to characterize ac amplitude measurement characteristics of high-resolution (24-bit) ADC based sampling devices and has been tested up to 100 kHz. Especially, a two-channel high-speed, high-resolution oscilloscope device has been internally self-calibrated and extensively characterized in the frequency range of 50 Hz-100 kHz. Furthermore, two ADCs, i.e. NI PXI 5922 and NI PXI 4461 have been compared with reference standard (Swerlein algorithm) to investigate their precision in rms amplitude measurement of ac signals.\",\"PeriodicalId\":6772,\"journal\":{\"name\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"1981 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC50364.2021.9459912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The AC Amplitude Measurement Characteristics of High-resolution Digitizers based on Calibration with Thermal Voltage Converter and Swerlein Algorithm
An automated test and calibration system based on a planar multijunction thermal voltage converter and a modular electronic instrumentation platform has been developed. Proposed measurement and calibration technique can be used to characterize ac amplitude measurement characteristics of high-resolution (24-bit) ADC based sampling devices and has been tested up to 100 kHz. Especially, a two-channel high-speed, high-resolution oscilloscope device has been internally self-calibrated and extensively characterized in the frequency range of 50 Hz-100 kHz. Furthermore, two ADCs, i.e. NI PXI 5922 and NI PXI 4461 have been compared with reference standard (Swerlein algorithm) to investigate their precision in rms amplitude measurement of ac signals.