从东热带太平洋系泊近地表盐度自动探测每小时降雨量

O. Chkrebtii, F. Bingham
{"title":"从东热带太平洋系泊近地表盐度自动探测每小时降雨量","authors":"O. Chkrebtii, F. Bingham","doi":"10.1175/aies-d-22-0009.1","DOIUrl":null,"url":null,"abstract":"\nWe explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of rainfall at hourly time scales from mooring near-surface salinity in the eastern tropical Pacific\",\"authors\":\"O. Chkrebtii, F. Bingham\",\"doi\":\"10.1175/aies-d-22-0009.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0009.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0009.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用sprs -2(上层海洋区域研究中的盐度过程-2)系泊在10°N,125°W的数据,探索使用海洋近地表盐度(NSS),即1米深度的盐度,作为每小时降水的降雨发生探测器。我们提出的无监督学习算法包括两个阶段。首先,基于经验分位数的NSS下降识别使我们能够捕获每小时平均降雨量> 5毫米/小时的大多数事件。然后,通过拟合基于盐度平衡方程的参数模型,局部校正降水持续时间的高估。我们提出了一个由代表个别降雨事件及其时间位置的少量校准参数组成的局地降水模型。我们表明,无监督降雨检测可以表述为从NSS数据预测这些变量的统计问题。我们展示了我们的结果,并提供了一种基于在sprs -2系泊处收集的数据的验证技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic detection of rainfall at hourly time scales from mooring near-surface salinity in the eastern tropical Pacific
We explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1