{"title":"从东热带太平洋系泊近地表盐度自动探测每小时降雨量","authors":"O. Chkrebtii, F. Bingham","doi":"10.1175/aies-d-22-0009.1","DOIUrl":null,"url":null,"abstract":"\nWe explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of rainfall at hourly time scales from mooring near-surface salinity in the eastern tropical Pacific\",\"authors\":\"O. Chkrebtii, F. Bingham\",\"doi\":\"10.1175/aies-d-22-0009.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0009.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0009.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic detection of rainfall at hourly time scales from mooring near-surface salinity in the eastern tropical Pacific
We explore the use of ocean near-surface salinity (NSS), i.e. salinity at 1 m depth, as a rainfall occurrence detector for hourly precipitation using data from the SPURS-2 (Salinity Processes in the Upper-ocean Regional Studies - 2) mooring at 10°N,125°W. Our proposed unsupervised learning algorithm consisting of two stages. First, an empirical quantile-based identification of dips in NSS enables us to capture most events with hourly averaged rainfall rate > 5 mm/hr. Over-estimation of precipitation duration is then corrected locally by fitting a parametric model based on the salinity balance equation. We propose a local precipitation model composed of a small number of calibration parameters representing individual rainfall events and their location in time. We show that unsupervised rainfall detection can be formulated as a statistical problem of predicting these variables from NSS data. We present our results and provide a validation technique based on data collected at the SPURS-2 mooring.