{"title":"次指数时间内的伪确定性结构","authors":"I. Oliveira, R. Santhanam","doi":"10.1145/3055399.3055500","DOIUrl":null,"url":null,"abstract":"We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence {pn} of primes and a randomized algorithm A running in expected sub-exponential time such that for each n, on input 1|pn|, A outputs pn with probability 1. In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a more general theorem about pseudodeterministic constructions. A property Q ⊆ {0,1}* is ϒ-dense if for large enough n, |Q ∩ {0,1}n| ≥ ϒ2n. We show that for each c > 0 at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family {Hn} of sets, Hn ⊆ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and every large enough n, Hn ∩ Q ≠ ∅ or (2) There is a deterministic sub-exponential time construction of a family {H′n} of sets, H′n ∩ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and for infinitely many values of n, H′n ∩ Q ≠ ∅. We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Pseudodeterministic constructions in subexponential time\",\"authors\":\"I. Oliveira, R. Santhanam\",\"doi\":\"10.1145/3055399.3055500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence {pn} of primes and a randomized algorithm A running in expected sub-exponential time such that for each n, on input 1|pn|, A outputs pn with probability 1. In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a more general theorem about pseudodeterministic constructions. A property Q ⊆ {0,1}* is ϒ-dense if for large enough n, |Q ∩ {0,1}n| ≥ ϒ2n. We show that for each c > 0 at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family {Hn} of sets, Hn ⊆ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and every large enough n, Hn ∩ Q ≠ ∅ or (2) There is a deterministic sub-exponential time construction of a family {H′n} of sets, H′n ∩ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and for infinitely many values of n, H′n ∩ Q ≠ ∅. We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudodeterministic constructions in subexponential time
We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence {pn} of primes and a randomized algorithm A running in expected sub-exponential time such that for each n, on input 1|pn|, A outputs pn with probability 1. In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a more general theorem about pseudodeterministic constructions. A property Q ⊆ {0,1}* is ϒ-dense if for large enough n, |Q ∩ {0,1}n| ≥ ϒ2n. We show that for each c > 0 at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family {Hn} of sets, Hn ⊆ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and every large enough n, Hn ∩ Q ≠ ∅ or (2) There is a deterministic sub-exponential time construction of a family {H′n} of sets, H′n ∩ {0,1}n, such that for each (1/nc)-dense property Q Ε DTIME(nc) and for infinitely many values of n, H′n ∩ Q ≠ ∅. We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.