使用步态模式的腰痛自动诊断

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES Tecnologia en Marcha Pub Date : 2022-11-16 DOI:10.18845/tm.v35i8.6459
Chandrasen Pandey, Neeraj Baghel, Malay Kishore-Dutta, Carlos M. Travieso González
{"title":"使用步态模式的腰痛自动诊断","authors":"Chandrasen Pandey, Neeraj Baghel, Malay Kishore-Dutta, Carlos M. Travieso González","doi":"10.18845/tm.v35i8.6459","DOIUrl":null,"url":null,"abstract":"Back pain is a common pain that mostly affects people of all ages and results in different types of disorders such as Obesity, Slipped disc, Scoliosis, and Osteoporosis, etc. The diagnosis of back pain disorder is difficult due to the extent affected by the disorder and exact biomechanical factors. This work presents a machine learning method to diagnose these disorders using the Gait monitoring system. It involves support vector machines that classify between lower back pain and normal, on the bases of 3 Gait patterns that are integrated pressure, the direction of progression, and CISP-ML. The proposed method uses 13 different features such as mean and standard deviation, etc. recorded from 62 subjects (30 normal and 32 with lower back pain). The features alone resulted in higher leave-one-out classification accuracy (LOOCV) 92%. The proposed method can be used for automatically diagnosing the lower back pain and its gait effects on the person. This model can be ported to small computing devices for self-diagnosis of lower back pain in a remote area.","PeriodicalId":42957,"journal":{"name":"Tecnologia en Marcha","volume":"8 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic diagnosis of lower back pain using gait patterns\",\"authors\":\"Chandrasen Pandey, Neeraj Baghel, Malay Kishore-Dutta, Carlos M. Travieso González\",\"doi\":\"10.18845/tm.v35i8.6459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Back pain is a common pain that mostly affects people of all ages and results in different types of disorders such as Obesity, Slipped disc, Scoliosis, and Osteoporosis, etc. The diagnosis of back pain disorder is difficult due to the extent affected by the disorder and exact biomechanical factors. This work presents a machine learning method to diagnose these disorders using the Gait monitoring system. It involves support vector machines that classify between lower back pain and normal, on the bases of 3 Gait patterns that are integrated pressure, the direction of progression, and CISP-ML. The proposed method uses 13 different features such as mean and standard deviation, etc. recorded from 62 subjects (30 normal and 32 with lower back pain). The features alone resulted in higher leave-one-out classification accuracy (LOOCV) 92%. The proposed method can be used for automatically diagnosing the lower back pain and its gait effects on the person. This model can be ported to small computing devices for self-diagnosis of lower back pain in a remote area.\",\"PeriodicalId\":42957,\"journal\":{\"name\":\"Tecnologia en Marcha\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnologia en Marcha\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18845/tm.v35i8.6459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia en Marcha","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18845/tm.v35i8.6459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背痛是一种常见的疼痛,主要影响所有年龄段的人,并导致不同类型的疾病,如肥胖、椎间盘突出、脊柱侧凸和骨质疏松症等。由于疾病的影响程度和确切的生物力学因素,腰痛障碍的诊断是困难的。这项工作提出了一种机器学习方法来诊断这些疾病使用步态监测系统。它涉及支持向量机,根据综合压力、前进方向和CISP-ML三种步态模式对下背部疼痛和正常进行分类。所提出的方法使用了来自62名受试者(30名正常受试者和32名腰痛患者)的13种不同特征,如平均值和标准差等。单独的特征导致更高的留一分类准确率(LOOCV) 92%。该方法可用于下背部疼痛及其对人体步态的影响的自动诊断。该模型可以移植到小型计算设备上,用于偏远地区腰痛的自我诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic diagnosis of lower back pain using gait patterns
Back pain is a common pain that mostly affects people of all ages and results in different types of disorders such as Obesity, Slipped disc, Scoliosis, and Osteoporosis, etc. The diagnosis of back pain disorder is difficult due to the extent affected by the disorder and exact biomechanical factors. This work presents a machine learning method to diagnose these disorders using the Gait monitoring system. It involves support vector machines that classify between lower back pain and normal, on the bases of 3 Gait patterns that are integrated pressure, the direction of progression, and CISP-ML. The proposed method uses 13 different features such as mean and standard deviation, etc. recorded from 62 subjects (30 normal and 32 with lower back pain). The features alone resulted in higher leave-one-out classification accuracy (LOOCV) 92%. The proposed method can be used for automatically diagnosing the lower back pain and its gait effects on the person. This model can be ported to small computing devices for self-diagnosis of lower back pain in a remote area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tecnologia en Marcha
Tecnologia en Marcha MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
93
审稿时长
28 weeks
期刊最新文献
Gestión de Residuos en proyectos de construcción de viviendas en Costa Rica: teoría versus práctica Enseñanza del ordenamiento territorial como herramienta en la gestión de proyectos de obra pública Transferencia de conocimiento desde las universidades a las empresas Virtualidad en la enseñanza de investigación en la maestría en Gerencia de Proyectos del Tecnológico de Costa Rica Impacto de la metodología BIM en la gestión de proyectos de construcción
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1