{"title":"两个旋转圆盘之间的发电机作用","authors":"A. Arslan, A. J. Mestel","doi":"10.1080/03091929.2020.1867123","DOIUrl":null,"url":null,"abstract":"Dynamo action is considered in the region between two differentially rotating infinite discs. The boundaries may be insulating, perfectly conducting or ferromagnetic. In the absence of a magnetic field, various well-known self-similar flows arise, generalising that of von Kármán. Magnetic field instabilities with the same similarity structure are sought. The kinematic eigenvalue problem is found to have growing modes for . The growth rate is real for the perfectly conducting and ferromagnetic cases, but may be complex for insulating boundaries. As it is shown that the dynamo can be fast or slow, depending on the flow structure. In the slow case, the growth rate is governed by a magnetic boundary layer on one of the discs. The growing field saturates in a solution to the nonlinear dynamo problem. The bifurcation is found to be subcritical and nonlinear dynamos are found for . Finally, the flux of magnetic energy to large r is examined, to determine which solutions might generalise to dynamos between finite discs. It is found that the fast dynamos tend to have inward energy flux, and so are unlikely to be realised in practice. Slow dynamos with outward flux are found. It is suggested that the average rotation rate should be non-zero in practice.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"107 5 1","pages":"710 - 727"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamo action between two rotating discs\",\"authors\":\"A. Arslan, A. J. Mestel\",\"doi\":\"10.1080/03091929.2020.1867123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamo action is considered in the region between two differentially rotating infinite discs. The boundaries may be insulating, perfectly conducting or ferromagnetic. In the absence of a magnetic field, various well-known self-similar flows arise, generalising that of von Kármán. Magnetic field instabilities with the same similarity structure are sought. The kinematic eigenvalue problem is found to have growing modes for . The growth rate is real for the perfectly conducting and ferromagnetic cases, but may be complex for insulating boundaries. As it is shown that the dynamo can be fast or slow, depending on the flow structure. In the slow case, the growth rate is governed by a magnetic boundary layer on one of the discs. The growing field saturates in a solution to the nonlinear dynamo problem. The bifurcation is found to be subcritical and nonlinear dynamos are found for . Finally, the flux of magnetic energy to large r is examined, to determine which solutions might generalise to dynamos between finite discs. It is found that the fast dynamos tend to have inward energy flux, and so are unlikely to be realised in practice. Slow dynamos with outward flux are found. It is suggested that the average rotation rate should be non-zero in practice.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"107 5 1\",\"pages\":\"710 - 727\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1867123\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1867123","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Dynamo action is considered in the region between two differentially rotating infinite discs. The boundaries may be insulating, perfectly conducting or ferromagnetic. In the absence of a magnetic field, various well-known self-similar flows arise, generalising that of von Kármán. Magnetic field instabilities with the same similarity structure are sought. The kinematic eigenvalue problem is found to have growing modes for . The growth rate is real for the perfectly conducting and ferromagnetic cases, but may be complex for insulating boundaries. As it is shown that the dynamo can be fast or slow, depending on the flow structure. In the slow case, the growth rate is governed by a magnetic boundary layer on one of the discs. The growing field saturates in a solution to the nonlinear dynamo problem. The bifurcation is found to be subcritical and nonlinear dynamos are found for . Finally, the flux of magnetic energy to large r is examined, to determine which solutions might generalise to dynamos between finite discs. It is found that the fast dynamos tend to have inward energy flux, and so are unlikely to be realised in practice. Slow dynamos with outward flux are found. It is suggested that the average rotation rate should be non-zero in practice.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.