多核加速器上后缀阵列构建的并行DC3算法

Gang Liao, Longfei Ma, Guangming Zang, L. Tang
{"title":"多核加速器上后缀阵列构建的并行DC3算法","authors":"Gang Liao, Longfei Ma, Guangming Zang, L. Tang","doi":"10.1109/CCGrid.2015.56","DOIUrl":null,"url":null,"abstract":"In bioinformatics applications, suffix arrays are widely used to DNA sequence alignments in the initial exact match phase of heuristic algorithms. With the exponential growth and availability of data, using many-core accelerators, like GPUs, to optimize existing algorithms is very common. We present a new implementation of suffix array on GPU. As a result, suffix array construction on GPU achieves around 10x speedup on standard large data sets, which contain more than 100 million characters. The idea is simple, fast and scalable that can be easily scale to multi-core processors and even heterogeneous architectures.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"1 1","pages":"1155-1158"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel DC3 Algorithm for Suffix Array Construction on Many-Core Accelerators\",\"authors\":\"Gang Liao, Longfei Ma, Guangming Zang, L. Tang\",\"doi\":\"10.1109/CCGrid.2015.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bioinformatics applications, suffix arrays are widely used to DNA sequence alignments in the initial exact match phase of heuristic algorithms. With the exponential growth and availability of data, using many-core accelerators, like GPUs, to optimize existing algorithms is very common. We present a new implementation of suffix array on GPU. As a result, suffix array construction on GPU achieves around 10x speedup on standard large data sets, which contain more than 100 million characters. The idea is simple, fast and scalable that can be easily scale to multi-core processors and even heterogeneous architectures.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"1 1\",\"pages\":\"1155-1158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在生物信息学应用中,后缀阵列广泛用于启发式算法初始精确匹配阶段的DNA序列比对。随着数据的指数级增长和可用性,使用多核加速器(如gpu)来优化现有算法是非常常见的。提出了一种新的后缀数组在GPU上的实现方法。因此,在包含超过1亿个字符的标准大型数据集上,GPU上的后缀数组构建实现了大约10倍的加速。这个想法简单、快速、可扩展,可以很容易地扩展到多核处理器甚至异构架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel DC3 Algorithm for Suffix Array Construction on Many-Core Accelerators
In bioinformatics applications, suffix arrays are widely used to DNA sequence alignments in the initial exact match phase of heuristic algorithms. With the exponential growth and availability of data, using many-core accelerators, like GPUs, to optimize existing algorithms is very common. We present a new implementation of suffix array on GPU. As a result, suffix array construction on GPU achieves around 10x speedup on standard large data sets, which contain more than 100 million characters. The idea is simple, fast and scalable that can be easily scale to multi-core processors and even heterogeneous architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1