{"title":"光学分光仪的设计、仿真与数据分析","authors":"Muddasir Naeem, T. Imran, M. Hussain, A. Bhatti","doi":"10.3390/opt3030028","DOIUrl":null,"url":null,"abstract":"Spectrometers have a wide range of applications ranging from optical to non-optical spectroscopy. The need for compact, portable, and user-friendly spectrometers has been a focus of attention from small laboratories to the industrial scale. Here, the Czerny Turner configuration-based optical spectrometer simulation design was carried out using ZEMAX OpticStudio. A compact and low-cost optical spectrometer in the visible range was developed by using diffraction grating as a dispersive element and a USB-type webcam CCD (charge-coupled device) as a detector instead of an expensive commercial diffraction grating and detector. Using National Instruments LabVIEW, data acquisition, processing, and display techniques were made possible. We employed different virtual images in LabVIEW programs to collect the pixel-to-pixel information and wavelength-intensity information from the image captured using the webcam CCD. Finally, we demonstrated that the OpticStudio-based spectrometer and experimental measurements with the developed spectrometer were in good agreement.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design Simulation and Data Analysis of an Optical Spectrometer\",\"authors\":\"Muddasir Naeem, T. Imran, M. Hussain, A. Bhatti\",\"doi\":\"10.3390/opt3030028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrometers have a wide range of applications ranging from optical to non-optical spectroscopy. The need for compact, portable, and user-friendly spectrometers has been a focus of attention from small laboratories to the industrial scale. Here, the Czerny Turner configuration-based optical spectrometer simulation design was carried out using ZEMAX OpticStudio. A compact and low-cost optical spectrometer in the visible range was developed by using diffraction grating as a dispersive element and a USB-type webcam CCD (charge-coupled device) as a detector instead of an expensive commercial diffraction grating and detector. Using National Instruments LabVIEW, data acquisition, processing, and display techniques were made possible. We employed different virtual images in LabVIEW programs to collect the pixel-to-pixel information and wavelength-intensity information from the image captured using the webcam CCD. Finally, we demonstrated that the OpticStudio-based spectrometer and experimental measurements with the developed spectrometer were in good agreement.\",\"PeriodicalId\":54548,\"journal\":{\"name\":\"Progress in Optics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/opt3030028\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt3030028","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Design Simulation and Data Analysis of an Optical Spectrometer
Spectrometers have a wide range of applications ranging from optical to non-optical spectroscopy. The need for compact, portable, and user-friendly spectrometers has been a focus of attention from small laboratories to the industrial scale. Here, the Czerny Turner configuration-based optical spectrometer simulation design was carried out using ZEMAX OpticStudio. A compact and low-cost optical spectrometer in the visible range was developed by using diffraction grating as a dispersive element and a USB-type webcam CCD (charge-coupled device) as a detector instead of an expensive commercial diffraction grating and detector. Using National Instruments LabVIEW, data acquisition, processing, and display techniques were made possible. We employed different virtual images in LabVIEW programs to collect the pixel-to-pixel information and wavelength-intensity information from the image captured using the webcam CCD. Finally, we demonstrated that the OpticStudio-based spectrometer and experimental measurements with the developed spectrometer were in good agreement.