多阶段图像恢复在高噪点和模糊设置

S. Voronin
{"title":"多阶段图像恢复在高噪点和模糊设置","authors":"S. Voronin","doi":"10.5539/cis.v12n1p72","DOIUrl":null,"url":null,"abstract":"We describe a simple approach useful for improving noisy, blurred images. Our approach is based on the use of a parallel block-based low rank factorization technique for projection based reduction of matrix dimensions and on a customized iteratively reweighted CG approach followed by the use of a Fourier Wiener filter. The regularization scheme with a transform basis offers variable residual penalty and increased per-iteration performance. The outlined approach is particularly aimed at high blur and noise settings.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"76 2 1","pages":"72-81"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Stage Image Restoration in High Noise and Blur Settings\",\"authors\":\"S. Voronin\",\"doi\":\"10.5539/cis.v12n1p72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a simple approach useful for improving noisy, blurred images. Our approach is based on the use of a parallel block-based low rank factorization technique for projection based reduction of matrix dimensions and on a customized iteratively reweighted CG approach followed by the use of a Fourier Wiener filter. The regularization scheme with a transform basis offers variable residual penalty and increased per-iteration performance. The outlined approach is particularly aimed at high blur and noise settings.\",\"PeriodicalId\":14676,\"journal\":{\"name\":\"J. Chem. Inf. Comput. Sci.\",\"volume\":\"76 2 1\",\"pages\":\"72-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Chem. Inf. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v12n1p72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v12n1p72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一个简单的方法,用于改善噪声,模糊的图像。我们的方法是基于使用并行的基于块的低秩分解技术,用于基于投影的矩阵维数降维,以及使用傅里叶维纳滤波器之后的自定义迭代重加权CG方法。具有变换基的正则化方案提供可变的残差惩罚和提高的每次迭代性能。概述的方法是特别针对高模糊和噪声设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Stage Image Restoration in High Noise and Blur Settings
We describe a simple approach useful for improving noisy, blurred images. Our approach is based on the use of a parallel block-based low rank factorization technique for projection based reduction of matrix dimensions and on a customized iteratively reweighted CG approach followed by the use of a Fourier Wiener filter. The regularization scheme with a transform basis offers variable residual penalty and increased per-iteration performance. The outlined approach is particularly aimed at high blur and noise settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image, Volume 41, Issue 13 Cover Image, Volume 41, Issue 15 Cover Image, Volume 41, Issue 14 Cover Image, Volume 41, Issue 11 Cover Image, Volume 41, Issue 9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1