Lingzi Yu, Sichao Qi, Guozhen Wei, Xi Rao, Danni Luo, Minyao Zou, Yuling Mi, Caiqiao Zhang, Jian Li
{"title":"kr<s:1> ppel样因子5激活鸡肠干细胞,促进损伤后黏膜修复。","authors":"Lingzi Yu, Sichao Qi, Guozhen Wei, Xi Rao, Danni Luo, Minyao Zou, Yuling Mi, Caiqiao Zhang, Jian Li","doi":"10.1080/15384101.2023.2278938","DOIUrl":null,"url":null,"abstract":"<p><p>The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased <i>Muc2</i> mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (<i>Ccnd1, Cdk2</i>). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker <i>Lgr5</i> mRNA and protein, and an increasing of rISCs marker <i>Hopx</i> mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of <i>Krüppel</i>-like factor 5 (<i>Klf5</i>) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the <i>Lgr5</i> mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to <i>Hopx</i> promoter and activate the rISCs, STAT5A would trigger <i>Lgr5</i> promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732631/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Krüppel</i>-like factor 5 activates chick intestinal stem cell and promotes mucosal repair after impairment.\",\"authors\":\"Lingzi Yu, Sichao Qi, Guozhen Wei, Xi Rao, Danni Luo, Minyao Zou, Yuling Mi, Caiqiao Zhang, Jian Li\",\"doi\":\"10.1080/15384101.2023.2278938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased <i>Muc2</i> mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (<i>Ccnd1, Cdk2</i>). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker <i>Lgr5</i> mRNA and protein, and an increasing of rISCs marker <i>Hopx</i> mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of <i>Krüppel</i>-like factor 5 (<i>Klf5</i>) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the <i>Lgr5</i> mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to <i>Hopx</i> promoter and activate the rISCs, STAT5A would trigger <i>Lgr5</i> promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2023.2278938\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2023.2278938","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Krüppel-like factor 5 activates chick intestinal stem cell and promotes mucosal repair after impairment.
The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased Muc2 mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (Ccnd1, Cdk2). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker Lgr5 mRNA and protein, and an increasing of rISCs marker Hopx mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of Krüppel-like factor 5 (Klf5) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the Lgr5 mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to Hopx promoter and activate the rISCs, STAT5A would trigger Lgr5 promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.