评估动态和预测判别的反复事件模型:使用时间相关的c指数。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-10-01 DOI:10.1093/biostatistics/kxad031
Jian Wang, Xinyang Jiang, Jing Ning
{"title":"评估动态和预测判别的反复事件模型:使用时间相关的c指数。","authors":"Jian Wang, Xinyang Jiang, Jing Ning","doi":"10.1093/biostatistics/kxad031","DOIUrl":null,"url":null,"abstract":"<p><p>Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1140-1155"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index.\",\"authors\":\"Jian Wang, Xinyang Jiang, Jing Ning\",\"doi\":\"10.1093/biostatistics/kxad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"1140-1155\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad031\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,人们对分析周期性事件数据的兴趣越来越大。复发事件数据风险预测模型的一个重要方面是准确区分具有不同复发事件风险的个体。虽然一致性指数(C-index)有效地评估了回归模型对周期性事件数据的整体判别能力,但也需要一个局部度量来捕捉回归模型随时间的动态性能。因此,在本研究中,我们提出了一个与时间相关的c指数测度来推断模型的局部判别能力。我们使用一个灵活的参数模型将c指数表述为时间的函数,并构建了一个基于一致性的似然估计和推断。我们采用了一种扰动重采样方法来估计方差。我们进行了大量的模拟,以研究所提出的时变c指数的有限样本性能和估计过程。我们将时间依赖的c指数应用于一项结直肠癌患者再住院研究的三个回归模型,以评估模型的判别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index.

Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
Recoverability of causal effects under presence of missing data: a longitudinal case study. Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms. The impact of coarsening an exposure on partial identifiability in instrumental variable settings. Selection processes, transportability, and failure time analysis in life history studies. Functional quantile principal component analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1