用花粉形态研究菊科植物的起源、早期进化和多样化

IF 1.5 3区 生物学 Q3 PLANT SCIENCES INTERNATIONAL JOURNAL OF PLANT SCIENCES Pub Date : 2023-03-30 DOI:10.1086/725046
M. C. Tellería, V. Barreda, P. Jardine, L. Palazzesi
{"title":"用花粉形态研究菊科植物的起源、早期进化和多样化","authors":"M. C. Tellería, V. Barreda, P. Jardine, L. Palazzesi","doi":"10.1086/725046","DOIUrl":null,"url":null,"abstract":"Pollen morphology has proven to be particularly informative for elucidating the evolutionary relationships within Asteraceae (or Compositae). However, very few studies have attempted to reconstruct the character states across the family based on pollen data. Here, we mapped pollen characters onto a recent phylogenomic tree of Asteraceae based on new and published observations. We also revised the pollen morphology of selected lineages of the family largely distributed in South America, including living representatives of the oldest fossils of Asteraceae. By mapping the three selected pollen characters onto a recent phylogenomic framework, we detected shifts and trends across the evolution of the family. Our study showed that Asteraceae pollen grains ancestrally possessed microspines and a nonlayered ecaveate exine. The morphology of this reconstructed ancestor agrees with that of the oldest extinct fossil pollen grains assigned to Barnadesieae discovered in late Cretaceous sediments from Antarctica and New Zealand. The presence of a layered sexine with stout columellae characterizes the most recent common ancestor of all Asteraceae, except for the sister clade Barnadesieae. This extinct ancestor also appears to be represented in the fossil record with morphologically related species of Mutisiapollis, distributed in Paleogene sediments across Patagonia, Africa, and Australia. Taken together, our work supports previous studies, indicating that the range of variation in pollen morphology across Asteraceae is wide yet phylogenetically structured. However, pollen characters (and character states) fail to support the unequivocal recognition of the selected monophyletic South American groups. Although preliminary, our results highlight the importance of scoring pollen characters to identify fossil specimens, explore character evolution, and reconstruct ancestral forms.","PeriodicalId":14306,"journal":{"name":"INTERNATIONAL JOURNAL OF PLANT SCIENCES","volume":"18 1","pages":"350 - 365"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Use of Pollen Morphology to Disentangle the Origin, Early Evolution, and Diversification of the Asteraceae\",\"authors\":\"M. C. Tellería, V. Barreda, P. Jardine, L. Palazzesi\",\"doi\":\"10.1086/725046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pollen morphology has proven to be particularly informative for elucidating the evolutionary relationships within Asteraceae (or Compositae). However, very few studies have attempted to reconstruct the character states across the family based on pollen data. Here, we mapped pollen characters onto a recent phylogenomic tree of Asteraceae based on new and published observations. We also revised the pollen morphology of selected lineages of the family largely distributed in South America, including living representatives of the oldest fossils of Asteraceae. By mapping the three selected pollen characters onto a recent phylogenomic framework, we detected shifts and trends across the evolution of the family. Our study showed that Asteraceae pollen grains ancestrally possessed microspines and a nonlayered ecaveate exine. The morphology of this reconstructed ancestor agrees with that of the oldest extinct fossil pollen grains assigned to Barnadesieae discovered in late Cretaceous sediments from Antarctica and New Zealand. The presence of a layered sexine with stout columellae characterizes the most recent common ancestor of all Asteraceae, except for the sister clade Barnadesieae. This extinct ancestor also appears to be represented in the fossil record with morphologically related species of Mutisiapollis, distributed in Paleogene sediments across Patagonia, Africa, and Australia. Taken together, our work supports previous studies, indicating that the range of variation in pollen morphology across Asteraceae is wide yet phylogenetically structured. However, pollen characters (and character states) fail to support the unequivocal recognition of the selected monophyletic South American groups. Although preliminary, our results highlight the importance of scoring pollen characters to identify fossil specimens, explore character evolution, and reconstruct ancestral forms.\",\"PeriodicalId\":14306,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF PLANT SCIENCES\",\"volume\":\"18 1\",\"pages\":\"350 - 365\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF PLANT SCIENCES\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/725046\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF PLANT SCIENCES","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/725046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

花粉形态已被证明对阐明菊科(或菊科)内的进化关系具有特别的信息。然而,很少有研究试图根据花粉数据重建整个科的特征状态。在这里,我们根据新的和已发表的观察结果,将花粉特征映射到最近的菊科系统基因组树上。我们还修改了主要分布在南美洲的菊科谱系的花粉形态,包括最古老的菊科化石的现存代表。通过将三个选定的花粉特征映射到最近的系统基因组框架上,我们发现了整个家族进化的变化和趋势。我们的研究表明,菊科花粉颗粒祖先具有微棘和非分层的凹形外壁。这个重建的祖先的形态与在南极洲和新西兰的白垩纪晚期沉积物中发现的最古老的已灭绝的Barnadesieae化石花粉颗粒的形态一致。除了姐妹分支Barnadesieae外,所有Asteraceae最近的共同祖先都具有具有粗壮小柱的分层性别。在化石记录中,这种已灭绝的祖先似乎也与分布在巴塔哥尼亚、非洲和澳大利亚的古近纪沉积物中与形态相关的多西波利斯物种有关。综上所述,我们的工作支持了以前的研究,表明菊科花粉形态的变异范围很广,但系统发育上是有结构的。然而,花粉特征(和特征状态)不能支持对所选南美单系群体的明确认识。虽然是初步的,但我们的结果强调了花粉特征评分对鉴定化石标本,探索特征进化和重建祖先形式的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Pollen Morphology to Disentangle the Origin, Early Evolution, and Diversification of the Asteraceae
Pollen morphology has proven to be particularly informative for elucidating the evolutionary relationships within Asteraceae (or Compositae). However, very few studies have attempted to reconstruct the character states across the family based on pollen data. Here, we mapped pollen characters onto a recent phylogenomic tree of Asteraceae based on new and published observations. We also revised the pollen morphology of selected lineages of the family largely distributed in South America, including living representatives of the oldest fossils of Asteraceae. By mapping the three selected pollen characters onto a recent phylogenomic framework, we detected shifts and trends across the evolution of the family. Our study showed that Asteraceae pollen grains ancestrally possessed microspines and a nonlayered ecaveate exine. The morphology of this reconstructed ancestor agrees with that of the oldest extinct fossil pollen grains assigned to Barnadesieae discovered in late Cretaceous sediments from Antarctica and New Zealand. The presence of a layered sexine with stout columellae characterizes the most recent common ancestor of all Asteraceae, except for the sister clade Barnadesieae. This extinct ancestor also appears to be represented in the fossil record with morphologically related species of Mutisiapollis, distributed in Paleogene sediments across Patagonia, Africa, and Australia. Taken together, our work supports previous studies, indicating that the range of variation in pollen morphology across Asteraceae is wide yet phylogenetically structured. However, pollen characters (and character states) fail to support the unequivocal recognition of the selected monophyletic South American groups. Although preliminary, our results highlight the importance of scoring pollen characters to identify fossil specimens, explore character evolution, and reconstruct ancestral forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
65
审稿时长
6-12 weeks
期刊介绍: The International Journal of Plant Sciences has a distinguished history of publishing research in the plant sciences since 1875. IJPS presents high quality, original, peer-reviewed research from laboratories around the world in all areas of the plant sciences. Topics covered range from genetics and genomics, developmental and cell biology, biochemistry and physiology, to morphology and anatomy, systematics, evolution, paleobotany, plant-microbe interactions, and ecology. IJPS does NOT publish papers on agriculture or crop improvement. In addition to full-length research papers, IJPS publishes review articles, including the open access Coulter Reviews, rapid communications, and perspectives. IJPS welcomes contributions that present evaluations and new perspectives on areas of current interest in plant biology. IJPS publishes nine issues per year and regularly features special issues on topics of particular interest, including new and exciting research originally presented at major botanical conferences.
期刊最新文献
Variable Investment into Cleistogamous Reproduction in Populations of Two Grass Species from Eastern North America Front Matter Giant Seeds of an Extant Australasian Legume Lineage Discovered in Eocene Borneo (South Kalimantan, Indonesia) Front Matter Effects of Ovule Position on Seed Maturation, Seed Mass, and Seedling Size in Eastern Redbud (Cercis canadensis)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1