无线射频能量收集网络的鲁棒贝叶斯学习

Nof Abuzainab, W. Saad, B. Maham
{"title":"无线射频能量收集网络的鲁棒贝叶斯学习","authors":"Nof Abuzainab, W. Saad, B. Maham","doi":"10.23919/WIOPT.2017.7959919","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of adversarial learning is studied for a wireless powered communication network (WPCN) in which a hybrid access point (HAP) seeks to learn the transmission power consumption profile of an associated wireless transmitter. The objective of the HAP is to use the learned estimate in order to determine the transmission power of the energy signal to be supplied to its associated device. However, such a learning scheme is subject to attacks by an adversary who tries to alter the HAP's learned estimate of the transmission power distribution in order to minimize the HAP's supplied energy. To build a robust estimate against such attacks, an unsupervised Bayesian learning method is proposed allowing the HAP to perform its estimation based only on the advertised transmisson power computed in each time slot. The proposed robust learning method relies on the assumption that the device's true transmission power is greater than or equal to advertised value. Then, based on the robust estimate, the problem of power selection of the energy signal by the HAP is formulated. The HAP optimal power selection problem is shown to be a discrete convex optimization problem, and a closed-form solution of the HAP's optimal transmission power is obtained. The results show that the proposed robust Bayesian learning scheme yields significant performance gains, by reducing the percentage of dropped transmitter's packets of about 85% compared to a conventional Bayesian learning approach. The results also show that these performance gains are achieved without jeopardizing the energy consumption of the HAP.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust Bayesian learning for wireless RF energy harvesting networks\",\"authors\":\"Nof Abuzainab, W. Saad, B. Maham\",\"doi\":\"10.23919/WIOPT.2017.7959919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of adversarial learning is studied for a wireless powered communication network (WPCN) in which a hybrid access point (HAP) seeks to learn the transmission power consumption profile of an associated wireless transmitter. The objective of the HAP is to use the learned estimate in order to determine the transmission power of the energy signal to be supplied to its associated device. However, such a learning scheme is subject to attacks by an adversary who tries to alter the HAP's learned estimate of the transmission power distribution in order to minimize the HAP's supplied energy. To build a robust estimate against such attacks, an unsupervised Bayesian learning method is proposed allowing the HAP to perform its estimation based only on the advertised transmisson power computed in each time slot. The proposed robust learning method relies on the assumption that the device's true transmission power is greater than or equal to advertised value. Then, based on the robust estimate, the problem of power selection of the energy signal by the HAP is formulated. The HAP optimal power selection problem is shown to be a discrete convex optimization problem, and a closed-form solution of the HAP's optimal transmission power is obtained. The results show that the proposed robust Bayesian learning scheme yields significant performance gains, by reducing the percentage of dropped transmitter's packets of about 85% compared to a conventional Bayesian learning approach. The results also show that these performance gains are achieved without jeopardizing the energy consumption of the HAP.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了无线供电通信网络(WPCN)的对抗学习问题,其中混合接入点(HAP)寻求学习相关无线发射机的传输功耗分布。HAP的目标是使用学习估计来确定要提供给其相关设备的能量信号的传输功率。然而,这种学习方案容易受到攻击者的攻击,攻击者试图改变HAP对传输功率分布的学习估计,以最小化HAP的供能。为了建立针对此类攻击的鲁棒估计,提出了一种无监督贝叶斯学习方法,允许HAP仅基于每个时隙中计算的发布传输功率进行估计。提出的鲁棒学习方法依赖于设备的真实传输功率大于或等于广告值的假设。然后,在鲁棒估计的基础上,提出了HAP对能量信号的功率选择问题。将HAP最优功率选择问题视为一个离散凸优化问题,得到了HAP最优传输功率的封闭解。结果表明,与传统的贝叶斯学习方法相比,所提出的鲁棒贝叶斯学习方案通过减少约85%的发送器数据包的丢弃百分比,获得了显着的性能提升。结果还表明,在不损害HAP能耗的情况下实现了这些性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Bayesian learning for wireless RF energy harvesting networks
In this paper, the problem of adversarial learning is studied for a wireless powered communication network (WPCN) in which a hybrid access point (HAP) seeks to learn the transmission power consumption profile of an associated wireless transmitter. The objective of the HAP is to use the learned estimate in order to determine the transmission power of the energy signal to be supplied to its associated device. However, such a learning scheme is subject to attacks by an adversary who tries to alter the HAP's learned estimate of the transmission power distribution in order to minimize the HAP's supplied energy. To build a robust estimate against such attacks, an unsupervised Bayesian learning method is proposed allowing the HAP to perform its estimation based only on the advertised transmisson power computed in each time slot. The proposed robust learning method relies on the assumption that the device's true transmission power is greater than or equal to advertised value. Then, based on the robust estimate, the problem of power selection of the energy signal by the HAP is formulated. The HAP optimal power selection problem is shown to be a discrete convex optimization problem, and a closed-form solution of the HAP's optimal transmission power is obtained. The results show that the proposed robust Bayesian learning scheme yields significant performance gains, by reducing the percentage of dropped transmitter's packets of about 85% compared to a conventional Bayesian learning approach. The results also show that these performance gains are achieved without jeopardizing the energy consumption of the HAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1