{"title":"MeCP2在Rett综合征少突胶质细胞谱系细胞中的作用:综述和推断","authors":"Zhen Zhang, Peng Li, Yongchang Chen","doi":"10.20517/and.2023.13","DOIUrl":null,"url":null,"abstract":"Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the MECP2 gene. Neuronal damage is the main factor contributing to RTT, and the loss of MeCP2 function can result in reduced neuronal somas size, decreased dendritic abundance, and impaired neuronal function. While specific restoration of MeCP2 expression in neurons has been reported to partially rescue the behavioral phenotype and prolong the lifespan of mice, it cannot provide a complete cure. Therefore, other cells may be involved in the development of RTT. Although imaging and autopsy findings have revealed decreased white matter volume and corpus callosum thickness in RTT patients, the mechanisms underlying the development of white matter abnormalities remain unclear. These abnormalities are predominantly caused by damage to mature oligodendrocytes. This review provides an overview of the proliferation, differentiation, and function of oligodendrocyte lineage cells and elucidates the role of MeCP2 in these cells.","PeriodicalId":93251,"journal":{"name":"Ageing and neurodegenerative diseases","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of MeCP2 in oligodendrocyte lineage cells in Rett syndrome: review and inference\",\"authors\":\"Zhen Zhang, Peng Li, Yongchang Chen\",\"doi\":\"10.20517/and.2023.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the MECP2 gene. Neuronal damage is the main factor contributing to RTT, and the loss of MeCP2 function can result in reduced neuronal somas size, decreased dendritic abundance, and impaired neuronal function. While specific restoration of MeCP2 expression in neurons has been reported to partially rescue the behavioral phenotype and prolong the lifespan of mice, it cannot provide a complete cure. Therefore, other cells may be involved in the development of RTT. Although imaging and autopsy findings have revealed decreased white matter volume and corpus callosum thickness in RTT patients, the mechanisms underlying the development of white matter abnormalities remain unclear. These abnormalities are predominantly caused by damage to mature oligodendrocytes. This review provides an overview of the proliferation, differentiation, and function of oligodendrocyte lineage cells and elucidates the role of MeCP2 in these cells.\",\"PeriodicalId\":93251,\"journal\":{\"name\":\"Ageing and neurodegenerative diseases\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing and neurodegenerative diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/and.2023.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing and neurodegenerative diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/and.2023.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of MeCP2 in oligodendrocyte lineage cells in Rett syndrome: review and inference
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the MECP2 gene. Neuronal damage is the main factor contributing to RTT, and the loss of MeCP2 function can result in reduced neuronal somas size, decreased dendritic abundance, and impaired neuronal function. While specific restoration of MeCP2 expression in neurons has been reported to partially rescue the behavioral phenotype and prolong the lifespan of mice, it cannot provide a complete cure. Therefore, other cells may be involved in the development of RTT. Although imaging and autopsy findings have revealed decreased white matter volume and corpus callosum thickness in RTT patients, the mechanisms underlying the development of white matter abnormalities remain unclear. These abnormalities are predominantly caused by damage to mature oligodendrocytes. This review provides an overview of the proliferation, differentiation, and function of oligodendrocyte lineage cells and elucidates the role of MeCP2 in these cells.