Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, D. Tao
{"title":"通过层次分解和组合学习看不见的概念","authors":"Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, D. Tao","doi":"10.1109/CVPR42600.2020.01026","DOIUrl":null,"url":null,"abstract":"Composing and recognizing new concepts from known sub-concepts has been a fundamental and challenging vision task, mainly due to 1) the diversity of sub-concepts and 2) the intricate contextuality between sub-concepts and their corresponding visual features. However, most of the current methods simply treat the contextuality as rigid semantic relationships and fail to capture fine-grained contextual correlations. We propose to learn unseen concepts in a hierarchical decomposition-and-composition manner. Considering the diversity of sub-concepts, our method decomposes each seen image into visual elements according to its labels, and learns corresponding sub-concepts in their individual subspaces. To model intricate contextuality between sub-concepts and their visual features, compositions are generated from these subspaces in three hierarchical forms, and the composed concepts are learned in a unified composition space. To further refine the captured contextual relationships, adaptively semi-positive concepts are defined and then learned with pseudo supervision exploited from the generated compositions. We validate the proposed approach on two challenging benchmarks, and demonstrate its superiority over state-of-the-art approaches.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"144 1","pages":"10245-10253"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Learning Unseen Concepts via Hierarchical Decomposition and Composition\",\"authors\":\"Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, D. Tao\",\"doi\":\"10.1109/CVPR42600.2020.01026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composing and recognizing new concepts from known sub-concepts has been a fundamental and challenging vision task, mainly due to 1) the diversity of sub-concepts and 2) the intricate contextuality between sub-concepts and their corresponding visual features. However, most of the current methods simply treat the contextuality as rigid semantic relationships and fail to capture fine-grained contextual correlations. We propose to learn unseen concepts in a hierarchical decomposition-and-composition manner. Considering the diversity of sub-concepts, our method decomposes each seen image into visual elements according to its labels, and learns corresponding sub-concepts in their individual subspaces. To model intricate contextuality between sub-concepts and their visual features, compositions are generated from these subspaces in three hierarchical forms, and the composed concepts are learned in a unified composition space. To further refine the captured contextual relationships, adaptively semi-positive concepts are defined and then learned with pseudo supervision exploited from the generated compositions. We validate the proposed approach on two challenging benchmarks, and demonstrate its superiority over state-of-the-art approaches.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"144 1\",\"pages\":\"10245-10253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR42600.2020.01026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Unseen Concepts via Hierarchical Decomposition and Composition
Composing and recognizing new concepts from known sub-concepts has been a fundamental and challenging vision task, mainly due to 1) the diversity of sub-concepts and 2) the intricate contextuality between sub-concepts and their corresponding visual features. However, most of the current methods simply treat the contextuality as rigid semantic relationships and fail to capture fine-grained contextual correlations. We propose to learn unseen concepts in a hierarchical decomposition-and-composition manner. Considering the diversity of sub-concepts, our method decomposes each seen image into visual elements according to its labels, and learns corresponding sub-concepts in their individual subspaces. To model intricate contextuality between sub-concepts and their visual features, compositions are generated from these subspaces in three hierarchical forms, and the composed concepts are learned in a unified composition space. To further refine the captured contextual relationships, adaptively semi-positive concepts are defined and then learned with pseudo supervision exploited from the generated compositions. We validate the proposed approach on two challenging benchmarks, and demonstrate its superiority over state-of-the-art approaches.