水下目标前向散射强度的Kirchhoff近似

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS Journal of Theoretical and Computational Acoustics Pub Date : 2020-03-01 DOI:10.1142/s2591728519500087
Chuanlin He, Yi Zheng, Xu Xiang, Yuanliang Ma
{"title":"水下目标前向散射强度的Kirchhoff近似","authors":"Chuanlin He, Yi Zheng, Xu Xiang, Yuanliang Ma","doi":"10.1142/s2591728519500087","DOIUrl":null,"url":null,"abstract":"Kirchhoff approximations for the forward-scattering target strength of underwater objects are developed by combining Babinet’s principle and the Kirchhoff integral, where theoretical formulations and a numerical implementation are given in detail. The Kirchhoff approximation is found to be a high-frequency physical acoustic approximation. The forward-scattering target strength versus frequency and the spatial angles for spherical objects, prolate spheroids and the Benchmark Target Strength Simulation Submarine (BeTSSi-Sub) model are obtained by the Kirchhoff approximation and compared with results from theory, the deformed cylinder method (DCM) and the boundary element method (BEM). The Kirchhoff approximation shows considerable agreement with the theoretical and numerical approaches in a region of [Formula: see text] from the rigorous forward-scattering direction. The forward-scattered field contour and the corresponding directivity for the BeTSSi-Sub model are also calculated as a demonstration. Mode coupling caused by the simulated target is clearly revealed. The results indicate that the Kirchhoff approximation can predict the forward-scattering target strength of complex underwater objects.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kirchhoff Approximations for the Forward-Scattering Target Strength of Underwater Objects\",\"authors\":\"Chuanlin He, Yi Zheng, Xu Xiang, Yuanliang Ma\",\"doi\":\"10.1142/s2591728519500087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kirchhoff approximations for the forward-scattering target strength of underwater objects are developed by combining Babinet’s principle and the Kirchhoff integral, where theoretical formulations and a numerical implementation are given in detail. The Kirchhoff approximation is found to be a high-frequency physical acoustic approximation. The forward-scattering target strength versus frequency and the spatial angles for spherical objects, prolate spheroids and the Benchmark Target Strength Simulation Submarine (BeTSSi-Sub) model are obtained by the Kirchhoff approximation and compared with results from theory, the deformed cylinder method (DCM) and the boundary element method (BEM). The Kirchhoff approximation shows considerable agreement with the theoretical and numerical approaches in a region of [Formula: see text] from the rigorous forward-scattering direction. The forward-scattered field contour and the corresponding directivity for the BeTSSi-Sub model are also calculated as a demonstration. Mode coupling caused by the simulated target is clearly revealed. The results indicate that the Kirchhoff approximation can predict the forward-scattering target strength of complex underwater objects.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728519500087\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728519500087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

摘要

结合Babinet原理和Kirchhoff积分,提出了水下目标前向散射强度的Kirchhoff近似,给出了理论表达式和数值实现。发现基尔霍夫近似是一个高频物理声学近似。采用Kirchhoff近似得到了球形物体、长形球体和基准目标强度模拟潜艇(BeTSSi-Sub)模型的前向散射目标强度随频率的变化和空间角度,并与理论、变形圆柱法(DCM)和边界元法(BEM)的结果进行了比较。从严格的前向散射方向来看,Kirchhoff近似与理论和数值方法在[公式:见文本]区域内显示出相当大的一致性。计算了betsi - sub模型的前向散射场等值线及其指向性。模拟目标引起的模式耦合得到了清晰的揭示。结果表明,Kirchhoff近似可以预测复杂水下目标的前向散射强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kirchhoff Approximations for the Forward-Scattering Target Strength of Underwater Objects
Kirchhoff approximations for the forward-scattering target strength of underwater objects are developed by combining Babinet’s principle and the Kirchhoff integral, where theoretical formulations and a numerical implementation are given in detail. The Kirchhoff approximation is found to be a high-frequency physical acoustic approximation. The forward-scattering target strength versus frequency and the spatial angles for spherical objects, prolate spheroids and the Benchmark Target Strength Simulation Submarine (BeTSSi-Sub) model are obtained by the Kirchhoff approximation and compared with results from theory, the deformed cylinder method (DCM) and the boundary element method (BEM). The Kirchhoff approximation shows considerable agreement with the theoretical and numerical approaches in a region of [Formula: see text] from the rigorous forward-scattering direction. The forward-scattered field contour and the corresponding directivity for the BeTSSi-Sub model are also calculated as a demonstration. Mode coupling caused by the simulated target is clearly revealed. The results indicate that the Kirchhoff approximation can predict the forward-scattering target strength of complex underwater objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
期刊最新文献
Further development of rotating beamforming techniques using asynchronous measurements Virtual rotating array for near-field localization of rotating sound sources Parameter Identification of a Large-scale Vibroacoustic Finite Element Model with a One-dimensional Convolutional Neural Network Update on the Ivory-billed Woodpecker (Campephilus principalis) Scandal For Special Issue on Inverse Problems in Acoustics Coherent noise denoising in beamforming based on non-convex robust principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1