D. Mastrangelo, L. Massai, G. Fioritoni, F. Coco, R. Nuti
{"title":"来自大自然的治疗:抗坏血酸(维生素C)的非凡抗癌特性","authors":"D. Mastrangelo, L. Massai, G. Fioritoni, F. Coco, R. Nuti","doi":"10.4172/2329-6771.1000157","DOIUrl":null,"url":null,"abstract":"The anticancer properties of Vitamin C (ascorbic acid o sodium ascorbate) are known since at least four decades, However, being a cheap and \"natural\" product, Vitamin C is not patentable and therefore has never been developed as an anticancer molecule. Recent in vitro investigations have confirmed the extraordinary antitumor properties of high doses of Vitamin C (sodium ascorbate), particularly when administered by the intravenous route, and phase I/II randomized, controlled clinical trials have been started to verify its anticancer properties in vivo. Unfortunately, the controlled clinical trials performed so far, do not confirm the extraordinary results obtained with Vitamin C (sodium ascorbate) in vitro. However, this may depend on a number of different factors, such as the pharmaceutical preparation (Sodium ascorbate may be more suitable than buffered ascorbic acid), the schedule of administration (slow infusion better than rapid infusion), tumor tissue oxygenation (Cancer tissue oxygenation is lower that oxygenation of tumor cell lines, in vitro), etc., which deserve further in depth investigation. Even with these limitations, Vitamin C (sodium ascorbate) in high doses, administered by intravenous route, beyond being extremely effective in vitro, against a number of human tumor cell lines, is safe, has minimal contraindications, improves the quality of life of patients, and is highly selective for cancer cells. The Authors discuss these important aspects and suggest possible solutions to improve the in vivo anticancer effects of Vitamin C (sodium ascorbate).","PeriodicalId":16252,"journal":{"name":"Journal of Integrative Oncology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Cure from Nature: The Extraordinary Anticancer Properties of Ascorbate (Vitamin C)\",\"authors\":\"D. Mastrangelo, L. Massai, G. Fioritoni, F. Coco, R. Nuti\",\"doi\":\"10.4172/2329-6771.1000157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The anticancer properties of Vitamin C (ascorbic acid o sodium ascorbate) are known since at least four decades, However, being a cheap and \\\"natural\\\" product, Vitamin C is not patentable and therefore has never been developed as an anticancer molecule. Recent in vitro investigations have confirmed the extraordinary antitumor properties of high doses of Vitamin C (sodium ascorbate), particularly when administered by the intravenous route, and phase I/II randomized, controlled clinical trials have been started to verify its anticancer properties in vivo. Unfortunately, the controlled clinical trials performed so far, do not confirm the extraordinary results obtained with Vitamin C (sodium ascorbate) in vitro. However, this may depend on a number of different factors, such as the pharmaceutical preparation (Sodium ascorbate may be more suitable than buffered ascorbic acid), the schedule of administration (slow infusion better than rapid infusion), tumor tissue oxygenation (Cancer tissue oxygenation is lower that oxygenation of tumor cell lines, in vitro), etc., which deserve further in depth investigation. Even with these limitations, Vitamin C (sodium ascorbate) in high doses, administered by intravenous route, beyond being extremely effective in vitro, against a number of human tumor cell lines, is safe, has minimal contraindications, improves the quality of life of patients, and is highly selective for cancer cells. The Authors discuss these important aspects and suggest possible solutions to improve the in vivo anticancer effects of Vitamin C (sodium ascorbate).\",\"PeriodicalId\":16252,\"journal\":{\"name\":\"Journal of Integrative Oncology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6771.1000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6771.1000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Cure from Nature: The Extraordinary Anticancer Properties of Ascorbate (Vitamin C)
The anticancer properties of Vitamin C (ascorbic acid o sodium ascorbate) are known since at least four decades, However, being a cheap and "natural" product, Vitamin C is not patentable and therefore has never been developed as an anticancer molecule. Recent in vitro investigations have confirmed the extraordinary antitumor properties of high doses of Vitamin C (sodium ascorbate), particularly when administered by the intravenous route, and phase I/II randomized, controlled clinical trials have been started to verify its anticancer properties in vivo. Unfortunately, the controlled clinical trials performed so far, do not confirm the extraordinary results obtained with Vitamin C (sodium ascorbate) in vitro. However, this may depend on a number of different factors, such as the pharmaceutical preparation (Sodium ascorbate may be more suitable than buffered ascorbic acid), the schedule of administration (slow infusion better than rapid infusion), tumor tissue oxygenation (Cancer tissue oxygenation is lower that oxygenation of tumor cell lines, in vitro), etc., which deserve further in depth investigation. Even with these limitations, Vitamin C (sodium ascorbate) in high doses, administered by intravenous route, beyond being extremely effective in vitro, against a number of human tumor cell lines, is safe, has minimal contraindications, improves the quality of life of patients, and is highly selective for cancer cells. The Authors discuss these important aspects and suggest possible solutions to improve the in vivo anticancer effects of Vitamin C (sodium ascorbate).