Hichem Mebarki, Tayeb Kebir, M. Benguediab, H. Fekirini, B. Bouchouicha, F. Lebon
{"title":"AA3003铝合金非焊接与FSW焊接混合模式断裂行为的实验与数值研究","authors":"Hichem Mebarki, Tayeb Kebir, M. Benguediab, H. Fekirini, B. Bouchouicha, F. Lebon","doi":"10.18280/acsm.460301","DOIUrl":null,"url":null,"abstract":"This study presents an experimental and computational analysis of fracture under mixed-mode conditions in aluminum alloy AA3003 using the Compact Tension Shear CTS specimen, both not welded and Friction stir welded. Mixed-mode fracture experiments were performed using the CTS specimen and an ARCAN loading device based on Richard's principle suitable for mixed-mode. The approach of linear elastic fracture mechanics allows for a better understanding of mixed-mode failure and the evaluation of the stress intensity parameters KI and KII. The variation of the stress intensity factor KI, KII is influenced by the pre-cracks length. The comparison between experimental results and the numerical results of simulation shows that there is a good agreement between these results.","PeriodicalId":7877,"journal":{"name":"Annales de Chimie - Science des Matériaux","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study of Fracture Behavior under Mixed-Mode of Al-Alloy AA3003 Not Welded and Welded by FSW Process\",\"authors\":\"Hichem Mebarki, Tayeb Kebir, M. Benguediab, H. Fekirini, B. Bouchouicha, F. Lebon\",\"doi\":\"10.18280/acsm.460301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an experimental and computational analysis of fracture under mixed-mode conditions in aluminum alloy AA3003 using the Compact Tension Shear CTS specimen, both not welded and Friction stir welded. Mixed-mode fracture experiments were performed using the CTS specimen and an ARCAN loading device based on Richard's principle suitable for mixed-mode. The approach of linear elastic fracture mechanics allows for a better understanding of mixed-mode failure and the evaluation of the stress intensity parameters KI and KII. The variation of the stress intensity factor KI, KII is influenced by the pre-cracks length. The comparison between experimental results and the numerical results of simulation shows that there is a good agreement between these results.\",\"PeriodicalId\":7877,\"journal\":{\"name\":\"Annales de Chimie - Science des Matériaux\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de Chimie - Science des Matériaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.460301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de Chimie - Science des Matériaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.460301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Numerical Study of Fracture Behavior under Mixed-Mode of Al-Alloy AA3003 Not Welded and Welded by FSW Process
This study presents an experimental and computational analysis of fracture under mixed-mode conditions in aluminum alloy AA3003 using the Compact Tension Shear CTS specimen, both not welded and Friction stir welded. Mixed-mode fracture experiments were performed using the CTS specimen and an ARCAN loading device based on Richard's principle suitable for mixed-mode. The approach of linear elastic fracture mechanics allows for a better understanding of mixed-mode failure and the evaluation of the stress intensity parameters KI and KII. The variation of the stress intensity factor KI, KII is influenced by the pre-cracks length. The comparison between experimental results and the numerical results of simulation shows that there is a good agreement between these results.