Lomax分布双组分混合的先验偏好

F. Younis, M. Aslam, M. Bhatti
{"title":"Lomax分布双组分混合的先验偏好","authors":"F. Younis, M. Aslam, M. Bhatti","doi":"10.2991/jsta.d.210616.002","DOIUrl":null,"url":null,"abstract":"Recently,\nEl-Sherpieny et al (2020) suggested Type -II hybrid censoring method for\nparametric estimation of Lomax distribution (LD) without due regards being\ngiven to the choice of priors and posterior risk associated with the model.\nThis paper fills this gap and derived the new LDmodel with minimum posterior\nrisk for the selection of priors. It derives a closed form expression for Bayes\nestimates and posterior risks using Square error loss function (SELF), Weighted\nloss function (WLF), Quadratic loss function (QLF) and Degroot loss function (DLF).\nPrior predictive approach is used to elicit the hyper parameters of mixture\nmodel. Analysis of Bayes estimates and posterior risks is presented in terms of\nsample size (n), mixing proportion ( p ) and censoring rate ( 0 t ), with\nthe help of simulation study. Usefulness of the model is demonstrated on applying\nit to simulated and real-life data which show promising results in terms of\nbetter estimation and risk reduction.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preference of Prior for Two-Component Mixture of Lomax Distribution\",\"authors\":\"F. Younis, M. Aslam, M. Bhatti\",\"doi\":\"10.2991/jsta.d.210616.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently,\\nEl-Sherpieny et al (2020) suggested Type -II hybrid censoring method for\\nparametric estimation of Lomax distribution (LD) without due regards being\\ngiven to the choice of priors and posterior risk associated with the model.\\nThis paper fills this gap and derived the new LDmodel with minimum posterior\\nrisk for the selection of priors. It derives a closed form expression for Bayes\\nestimates and posterior risks using Square error loss function (SELF), Weighted\\nloss function (WLF), Quadratic loss function (QLF) and Degroot loss function (DLF).\\nPrior predictive approach is used to elicit the hyper parameters of mixture\\nmodel. Analysis of Bayes estimates and posterior risks is presented in terms of\\nsample size (n), mixing proportion ( p ) and censoring rate ( 0 t ), with\\nthe help of simulation study. Usefulness of the model is demonstrated on applying\\nit to simulated and real-life data which show promising results in terms of\\nbetter estimation and risk reduction.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.210616.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.210616.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

最近,El-Sherpieny等人(2020)提出了用于Lomax分布(LD)参数估计的Type -II混合审查方法,而没有适当考虑与模型相关的先验和后验风险的选择。本文填补了这一空白,并推导出具有最小后验风险的新的LDmodel来选择先验。利用平方误差损失函数(SELF)、加权损失函数(WLF)、二次损失函数(QLF)和Degroot损失函数(DLF)导出贝叶斯估计和后置风险的封闭表达式。采用先验预测方法得到混合模型的超参数。在模拟研究的帮助下,从样本量(n)、混合比例(p)和审查率(0 t)三个方面对贝叶斯估计和后验风险进行了分析。将该模型应用于模拟和实际数据,证明了其有效性,在更好的估计和降低风险方面显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preference of Prior for Two-Component Mixture of Lomax Distribution
Recently, El-Sherpieny et al (2020) suggested Type -II hybrid censoring method for parametric estimation of Lomax distribution (LD) without due regards being given to the choice of priors and posterior risk associated with the model. This paper fills this gap and derived the new LDmodel with minimum posterior risk for the selection of priors. It derives a closed form expression for Bayes estimates and posterior risks using Square error loss function (SELF), Weighted loss function (WLF), Quadratic loss function (QLF) and Degroot loss function (DLF). Prior predictive approach is used to elicit the hyper parameters of mixture model. Analysis of Bayes estimates and posterior risks is presented in terms of sample size (n), mixing proportion ( p ) and censoring rate ( 0 t ), with the help of simulation study. Usefulness of the model is demonstrated on applying it to simulated and real-life data which show promising results in terms of better estimation and risk reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
期刊最新文献
Correction: Topp-Leone Cauchy Family of Distributions with Applications in Industrial Engineering Topp-Leone Cauchy Family of Distributions with Applications in Industrial Engineering Zero to k Inflated Poisson Regression Models with Applications A Class of Estimators for Estimation of Population Mean Under Random Non-response in Two Phase Successive Sampling Predictive Estimation of Finite Population Mean in Case of Missing Data Under Two-phase Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1