基于统一主题的语义模型:地理术语语义关联计算研究

H. Sadr, Mojdeh Nazari Soleimandarabi, M. Pedram, M. Teshnelab
{"title":"基于统一主题的语义模型:地理术语语义关联计算研究","authors":"H. Sadr, Mojdeh Nazari Soleimandarabi, M. Pedram, M. Teshnelab","doi":"10.1109/ICWR.2019.8765257","DOIUrl":null,"url":null,"abstract":"Over the last decades, a multitude of semantic relatedness measures have been proposed. Despite an extensive amount of work dedicated to this area of research, the understanding of their foundation is still limited in real-world applications. In this paper, a unifying approach representing topic-based models is proposed and from which the state-of-the-art semantic relatedness measures are divided into two distinct types of topic-based and ontology-based models. Regardless of extensive researches in the field of ontology-based models, topic-based models have not been taken into account considerably. Consequently, the unified approach is able to highlight equivalences among these models and propose bridges between their theoretical bases. On the other hand, presenting a comprehensive unifying approach of topic-based models induces readers to have a common understanding of them despite the differences and complexities between their architecture and configuration details. In order to evaluate topic-based models in comparison to ontology-based models, comprehensive experiments in the application of semantic relatedness of geographic phrases have been applied. Empirical results have demonstrated that not only topic-based models in comparison to ontology-based models confront with fewer restrictions in the real world, but also their performance in computing semantic relatedness of geographic phrases is significantly superior to ontology-based models.","PeriodicalId":6680,"journal":{"name":"2019 5th International Conference on Web Research (ICWR)","volume":"13 1","pages":"134-140"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unified Topic-Based Semantic Models: A Study in Computing the Semantic Relatedness of Geographic Terms\",\"authors\":\"H. Sadr, Mojdeh Nazari Soleimandarabi, M. Pedram, M. Teshnelab\",\"doi\":\"10.1109/ICWR.2019.8765257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decades, a multitude of semantic relatedness measures have been proposed. Despite an extensive amount of work dedicated to this area of research, the understanding of their foundation is still limited in real-world applications. In this paper, a unifying approach representing topic-based models is proposed and from which the state-of-the-art semantic relatedness measures are divided into two distinct types of topic-based and ontology-based models. Regardless of extensive researches in the field of ontology-based models, topic-based models have not been taken into account considerably. Consequently, the unified approach is able to highlight equivalences among these models and propose bridges between their theoretical bases. On the other hand, presenting a comprehensive unifying approach of topic-based models induces readers to have a common understanding of them despite the differences and complexities between their architecture and configuration details. In order to evaluate topic-based models in comparison to ontology-based models, comprehensive experiments in the application of semantic relatedness of geographic phrases have been applied. Empirical results have demonstrated that not only topic-based models in comparison to ontology-based models confront with fewer restrictions in the real world, but also their performance in computing semantic relatedness of geographic phrases is significantly superior to ontology-based models.\",\"PeriodicalId\":6680,\"journal\":{\"name\":\"2019 5th International Conference on Web Research (ICWR)\",\"volume\":\"13 1\",\"pages\":\"134-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Web Research (ICWR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWR.2019.8765257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR.2019.8765257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在过去的几十年里,已经提出了大量的语义相关性度量。尽管有大量的工作致力于这一研究领域,但在实际应用中对其基础的理解仍然有限。本文提出了一种表示基于主题的模型的统一方法,并将目前最先进的语义相关性度量分为基于主题的模型和基于本体的模型两种不同的类型。尽管基于本体的模型研究非常广泛,但基于主题的模型并没有得到足够的重视。因此,统一的方法能够突出这些模型之间的等价性,并在它们的理论基础之间架起桥梁。另一方面,尽管它们的体系结构和配置细节之间存在差异和复杂性,但呈现基于主题的模型的全面统一方法可以诱导读者对它们有一个共同的理解。为了比较基于主题的模型与基于本体的模型,本文对地理短语语义相关性的应用进行了全面的实验。实证结果表明,与基于本体的模型相比,基于主题的模型不仅在现实世界中受到的限制更少,而且在计算地理短语的语义相关性方面也明显优于基于本体的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified Topic-Based Semantic Models: A Study in Computing the Semantic Relatedness of Geographic Terms
Over the last decades, a multitude of semantic relatedness measures have been proposed. Despite an extensive amount of work dedicated to this area of research, the understanding of their foundation is still limited in real-world applications. In this paper, a unifying approach representing topic-based models is proposed and from which the state-of-the-art semantic relatedness measures are divided into two distinct types of topic-based and ontology-based models. Regardless of extensive researches in the field of ontology-based models, topic-based models have not been taken into account considerably. Consequently, the unified approach is able to highlight equivalences among these models and propose bridges between their theoretical bases. On the other hand, presenting a comprehensive unifying approach of topic-based models induces readers to have a common understanding of them despite the differences and complexities between their architecture and configuration details. In order to evaluate topic-based models in comparison to ontology-based models, comprehensive experiments in the application of semantic relatedness of geographic phrases have been applied. Empirical results have demonstrated that not only topic-based models in comparison to ontology-based models confront with fewer restrictions in the real world, but also their performance in computing semantic relatedness of geographic phrases is significantly superior to ontology-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things A Sentiment Aggregation System based on an OWA Operator Using Web Mining in the Analysis of Housing Prices: A Case study of Tehran An Adaptive Machine Learning Based Approach for Phishing Detection Using Hybrid Features Mobility-Aware Parent Selection for Routing Protocol in Wireless Sensor Networks using RPL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1