{"title":"密闭冲击射流反应器合成钴铁氧体纳米颗粒。","authors":"Abiev Rs, A. Ov, Izotova Sg, Gusarov Vv","doi":"10.35841/CHEMICAL-TECHNOLOGY.1.1.7-13","DOIUrl":null,"url":null,"abstract":"The process of cobalt ferrite synthesis by means of confined impinging jets was studied experimentally at relative low temperatures (20°C to 30°C) and ambient pressure. Unlike hydrothermal synthesis usually performed at high pressures and temperatures (400°C to 450°C), impinging jets synthesis allows to produce small particles (approx. 8 nm mean size) within few milliseconds in a continuous flow. Due to short contact of reagents heir fast and effective mixing it was possible to avoid co-products formation and to exclude the growth of crystallines. Ability to control stable and effective hydrodynamics and the fast separation of products from co-products results in the optimal conditions for fast reaction of precipitation practically excluding building of large particles and aggregates.","PeriodicalId":22505,"journal":{"name":"the Chemical Technology","volume":"1 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors.\",\"authors\":\"Abiev Rs, A. Ov, Izotova Sg, Gusarov Vv\",\"doi\":\"10.35841/CHEMICAL-TECHNOLOGY.1.1.7-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of cobalt ferrite synthesis by means of confined impinging jets was studied experimentally at relative low temperatures (20°C to 30°C) and ambient pressure. Unlike hydrothermal synthesis usually performed at high pressures and temperatures (400°C to 450°C), impinging jets synthesis allows to produce small particles (approx. 8 nm mean size) within few milliseconds in a continuous flow. Due to short contact of reagents heir fast and effective mixing it was possible to avoid co-products formation and to exclude the growth of crystallines. Ability to control stable and effective hydrodynamics and the fast separation of products from co-products results in the optimal conditions for fast reaction of precipitation practically excluding building of large particles and aggregates.\",\"PeriodicalId\":22505,\"journal\":{\"name\":\"the Chemical Technology\",\"volume\":\"1 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"the Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35841/CHEMICAL-TECHNOLOGY.1.1.7-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"the Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35841/CHEMICAL-TECHNOLOGY.1.1.7-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors.
The process of cobalt ferrite synthesis by means of confined impinging jets was studied experimentally at relative low temperatures (20°C to 30°C) and ambient pressure. Unlike hydrothermal synthesis usually performed at high pressures and temperatures (400°C to 450°C), impinging jets synthesis allows to produce small particles (approx. 8 nm mean size) within few milliseconds in a continuous flow. Due to short contact of reagents heir fast and effective mixing it was possible to avoid co-products formation and to exclude the growth of crystallines. Ability to control stable and effective hydrodynamics and the fast separation of products from co-products results in the optimal conditions for fast reaction of precipitation practically excluding building of large particles and aggregates.