锚链磨损退化的疲劳分析

G. Gemilang, P. Reed, A. Sobey
{"title":"锚链磨损退化的疲劳分析","authors":"G. Gemilang, P. Reed, A. Sobey","doi":"10.1115/omae2019-96386","DOIUrl":null,"url":null,"abstract":"\n There are currently 365 FPSOs in service around the world. These vessels all use mooring lines to maintain position and provide stability, keeping the vessel and cargo safe. However, more than 21 failures have occurred between 2001 and 2011 and approximately 50% of the reported failures occurred in the first 3 years of 20-year design life. Each mooring line failure represents the potential for serious environmental and economic consequences. Based on industry surveys, the most common failure mode is fatigue failure. In the current offshore standards, the surface degradation due to wear and corrosion is modelled as a diameter loss at a standards rate. To assess whether the uniform reduction in chain diameter suggested in the offshore standards is able to explain the early chain failures seen in service, this paper incorporates two wear rates into a fatigue life calculation; one wear rate is taken from DNV-OS-E301 and is compared against one taken from NORSOK M-001. Three fatigue life estimation approaches: tension, nominal stress and hotspot, are used to compare the differences in fatigue method. The stress in the chain is calculated using an analytical model, which is verified against an FE model. The effect of wear degradation on the ultimate strength of the chain is calculated based on the minimum breaking load. The results show that the diameter loss rates suggested in the offshore standards are not able to explain the early mooring chain failures seen in the past and that the reduction of diameter cannot solely explain the early failures seen in service. The hotspot approach, not often used in mooring line predictions, is best able to predict these shorter lives, as it offers more accurate fatigue predictions by considering high peak stresses compared to standard methods such as tension and nominal stress approaches.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fatigue Approaches for Mooring Chains Subjected to Wear Degradation\",\"authors\":\"G. Gemilang, P. Reed, A. Sobey\",\"doi\":\"10.1115/omae2019-96386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are currently 365 FPSOs in service around the world. These vessels all use mooring lines to maintain position and provide stability, keeping the vessel and cargo safe. However, more than 21 failures have occurred between 2001 and 2011 and approximately 50% of the reported failures occurred in the first 3 years of 20-year design life. Each mooring line failure represents the potential for serious environmental and economic consequences. Based on industry surveys, the most common failure mode is fatigue failure. In the current offshore standards, the surface degradation due to wear and corrosion is modelled as a diameter loss at a standards rate. To assess whether the uniform reduction in chain diameter suggested in the offshore standards is able to explain the early chain failures seen in service, this paper incorporates two wear rates into a fatigue life calculation; one wear rate is taken from DNV-OS-E301 and is compared against one taken from NORSOK M-001. Three fatigue life estimation approaches: tension, nominal stress and hotspot, are used to compare the differences in fatigue method. The stress in the chain is calculated using an analytical model, which is verified against an FE model. The effect of wear degradation on the ultimate strength of the chain is calculated based on the minimum breaking load. The results show that the diameter loss rates suggested in the offshore standards are not able to explain the early mooring chain failures seen in the past and that the reduction of diameter cannot solely explain the early failures seen in service. The hotspot approach, not often used in mooring line predictions, is best able to predict these shorter lives, as it offers more accurate fatigue predictions by considering high peak stresses compared to standard methods such as tension and nominal stress approaches.\",\"PeriodicalId\":23567,\"journal\":{\"name\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,全球共有365艘fpso在役。这些船只都使用系泊绳来保持位置并提供稳定性,保证船只和货物的安全。然而,2001年至2011年间发生了21起以上的故障,其中约50%的故障发生在20年设计寿命的前3年。每次系泊线故障都可能造成严重的环境和经济后果。根据行业调查,最常见的失效模式是疲劳失效。在目前的海上标准中,由于磨损和腐蚀导致的表面退化被建模为标准速率下的直径损失。为了评估海上标准中提出的链条直径均匀减小是否能够解释使用中出现的早期链条失效,本文将两种磨损率纳入疲劳寿命计算;将DNV-OS-E301的磨损率与NORSOK M-001的磨损率进行比较。采用张力法、名义应力法和热点法三种疲劳寿命估计方法,比较了疲劳方法的差异。利用解析模型计算了链条上的应力,并与有限元模型进行了验证。基于最小断裂载荷计算磨损退化对链条极限强度的影响。结果表明,海上标准中提出的直径损失率不能解释过去早期锚链的失效,直径的减小也不能单独解释使用中早期锚链的失效。热点方法不常用于系泊线预测,但它最能预测这些较短的寿命,因为与张力和名义应力方法等标准方法相比,它通过考虑峰值应力提供了更准确的疲劳预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Approaches for Mooring Chains Subjected to Wear Degradation
There are currently 365 FPSOs in service around the world. These vessels all use mooring lines to maintain position and provide stability, keeping the vessel and cargo safe. However, more than 21 failures have occurred between 2001 and 2011 and approximately 50% of the reported failures occurred in the first 3 years of 20-year design life. Each mooring line failure represents the potential for serious environmental and economic consequences. Based on industry surveys, the most common failure mode is fatigue failure. In the current offshore standards, the surface degradation due to wear and corrosion is modelled as a diameter loss at a standards rate. To assess whether the uniform reduction in chain diameter suggested in the offshore standards is able to explain the early chain failures seen in service, this paper incorporates two wear rates into a fatigue life calculation; one wear rate is taken from DNV-OS-E301 and is compared against one taken from NORSOK M-001. Three fatigue life estimation approaches: tension, nominal stress and hotspot, are used to compare the differences in fatigue method. The stress in the chain is calculated using an analytical model, which is verified against an FE model. The effect of wear degradation on the ultimate strength of the chain is calculated based on the minimum breaking load. The results show that the diameter loss rates suggested in the offshore standards are not able to explain the early mooring chain failures seen in the past and that the reduction of diameter cannot solely explain the early failures seen in service. The hotspot approach, not often used in mooring line predictions, is best able to predict these shorter lives, as it offers more accurate fatigue predictions by considering high peak stresses compared to standard methods such as tension and nominal stress approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1