海上风电场船自升式设计初期动态定位能力计算

M. Liebert
{"title":"海上风电场船自升式设计初期动态定位能力计算","authors":"M. Liebert","doi":"10.1115/omae2019-95248","DOIUrl":null,"url":null,"abstract":"\n As a consequence of the planned exit from fossil-based energy in the European Union the exploitation of renewable energies has become a major aspect of the Offshore Industry. Especially the construction and operation of offshore wind energy turbines pose a challenge which is met by the use of jack-up vessels with extendible legs. In order to dimension the vessel’s manoeuvring devices in the early design stage and to ensure a safe jack-up process for given environmental loads the dynamic positioning capability during the jacking including the influence of the legs has to be calculated. As part of the development of a holistic dynamic analysis this paper presents the implementation of the legs’ influence in an existing manoeuvring method. The manoeuvring method solves the equations of motion in three degrees of freedom (surge, sway, yaw). It is based on a force model which comprises various modular components. Therefore another component for the leg-forces is added. A Morison approach is chosen to calculate the hydrodynamic forces on the cylindrical legs. The legs’ hydrodynamic added masses are accounted for and added to the hull’s inertial terms. The benefit of the presented method is the possibility to calculate the dynamic positioning capability with extended legs without being dependent on the results of either time-consuming or non-specific model tests. Therefore the method represents a fast computing tool to design the vessel for the specific environmental conditions of the site of operation.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calculation of the Dynamic Positioning Capability of an Offshore Wind Farm Vessel During the Jack-Up Process in the Early Design Stage\",\"authors\":\"M. Liebert\",\"doi\":\"10.1115/omae2019-95248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a consequence of the planned exit from fossil-based energy in the European Union the exploitation of renewable energies has become a major aspect of the Offshore Industry. Especially the construction and operation of offshore wind energy turbines pose a challenge which is met by the use of jack-up vessels with extendible legs. In order to dimension the vessel’s manoeuvring devices in the early design stage and to ensure a safe jack-up process for given environmental loads the dynamic positioning capability during the jacking including the influence of the legs has to be calculated. As part of the development of a holistic dynamic analysis this paper presents the implementation of the legs’ influence in an existing manoeuvring method. The manoeuvring method solves the equations of motion in three degrees of freedom (surge, sway, yaw). It is based on a force model which comprises various modular components. Therefore another component for the leg-forces is added. A Morison approach is chosen to calculate the hydrodynamic forces on the cylindrical legs. The legs’ hydrodynamic added masses are accounted for and added to the hull’s inertial terms. The benefit of the presented method is the possibility to calculate the dynamic positioning capability with extended legs without being dependent on the results of either time-consuming or non-specific model tests. Therefore the method represents a fast computing tool to design the vessel for the specific environmental conditions of the site of operation.\",\"PeriodicalId\":23567,\"journal\":{\"name\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于欧盟计划退出化石能源,可再生能源的开发已成为海上工业的一个主要方面。特别是海上风力发电机组的建造和运行对自升式可伸缩船的使用提出了挑战。为了在早期设计阶段确定船舶操纵装置的尺寸,并确保在给定环境载荷下自升过程的安全,必须计算包括支腿影响在内的自升过程中的动态定位能力。作为整体动态分析发展的一部分,本文提出了在现有的机动方法中实现腿的影响。机动方法求解三个自由度(浪涌、摇摆、偏航)的运动方程。它基于一个力模型,该模型由各种模块组成。因此,腿部力量的另一个组成部分被添加。采用Morison法计算圆柱腿上的水动力。腿的水动力附加质量被考虑并添加到船体的惯性项中。该方法的优点是可以计算具有延伸腿的动态定位能力,而不依赖于耗时或非特定模型试验的结果。因此,该方法是一种快速计算工具,可以根据作业现场的特定环境条件进行船舶设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation of the Dynamic Positioning Capability of an Offshore Wind Farm Vessel During the Jack-Up Process in the Early Design Stage
As a consequence of the planned exit from fossil-based energy in the European Union the exploitation of renewable energies has become a major aspect of the Offshore Industry. Especially the construction and operation of offshore wind energy turbines pose a challenge which is met by the use of jack-up vessels with extendible legs. In order to dimension the vessel’s manoeuvring devices in the early design stage and to ensure a safe jack-up process for given environmental loads the dynamic positioning capability during the jacking including the influence of the legs has to be calculated. As part of the development of a holistic dynamic analysis this paper presents the implementation of the legs’ influence in an existing manoeuvring method. The manoeuvring method solves the equations of motion in three degrees of freedom (surge, sway, yaw). It is based on a force model which comprises various modular components. Therefore another component for the leg-forces is added. A Morison approach is chosen to calculate the hydrodynamic forces on the cylindrical legs. The legs’ hydrodynamic added masses are accounted for and added to the hull’s inertial terms. The benefit of the presented method is the possibility to calculate the dynamic positioning capability with extended legs without being dependent on the results of either time-consuming or non-specific model tests. Therefore the method represents a fast computing tool to design the vessel for the specific environmental conditions of the site of operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1