{"title":"李群中交换元空间的同调稳定性","authors":"D. Ramras, Mentor Stafa","doi":"10.1093/IMRN/RNAA094","DOIUrl":null,"url":null,"abstract":"In this paper we study homological stability for spaces ${\\rm Hom}(\\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\\rm Comm}(G)$ and ${\\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Homological Stability for Spaces of Commuting Elements in Lie Groups\",\"authors\":\"D. Ramras, Mentor Stafa\",\"doi\":\"10.1093/IMRN/RNAA094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study homological stability for spaces ${\\\\rm Hom}(\\\\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\\\\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\\\\rm Comm}(G)$ and ${\\\\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\\\\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homological Stability for Spaces of Commuting Elements in Lie Groups
In this paper we study homological stability for spaces ${\rm Hom}(\mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${\rm Comm}(G)$ and ${\rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${\rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.