Junjie Pan, Feng Chen, E. Cabrera, Zhiyu Min, Shilun Ruan, Min Wu, Dan Zhang, J. Castro, L. J. Lee
{"title":"半结晶聚对苯二甲酸乙二醇酯的碳颗粒和控制水解辅助挤出发泡以增强隔热性能","authors":"Junjie Pan, Feng Chen, E. Cabrera, Zhiyu Min, Shilun Ruan, Min Wu, Dan Zhang, J. Castro, L. J. Lee","doi":"10.1177/0021955X20952751","DOIUrl":null,"url":null,"abstract":"This work presents a facile method to produce low-density PET foams using pristine semi-crystalline resin by moisture-induced controlled-hydrolysis in a tight processing window (moisture content ∼ 0.12 wt.%). We investigated the effect of moisture and moisture containing activated carbon (AC) on the foam expansion ratio, cell morphology, and PET resin degradation and crystallization properties. Controlled-hydrolysis increased the melt-flow rate of PET resin (intrinsic viscosity: 0.52 to 0.54 dL/g) without losing crystallinity, and thus the PET foams possess better tensile properties (∼2 MPa stress and ∼100% strain) and higher thermal stability (>200°C) than chemically modified PET foams. The foam density could be made as low as ∼ 0.15 g/cm3 using a lab scale twin-screw extruder. A strand array die was also designed to produce plate-shaped foam samples. AC allowed easier control of the moisture content and delayed resin degradation in extrusion. Both AC and micrographite (mGr) could stabilize the PET foam morphology in extrusion and serve as good infrared attenuation agents (IAAs) in a simulated housing thermal insulation experiment.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"71 1","pages":"695 - 716"},"PeriodicalIF":3.2000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbon particulate and controlled-hydrolysis assisted extrusion foaming of semi-crystalline polyethylene terephthalate for the enhanced thermal insulation property\",\"authors\":\"Junjie Pan, Feng Chen, E. Cabrera, Zhiyu Min, Shilun Ruan, Min Wu, Dan Zhang, J. Castro, L. J. Lee\",\"doi\":\"10.1177/0021955X20952751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a facile method to produce low-density PET foams using pristine semi-crystalline resin by moisture-induced controlled-hydrolysis in a tight processing window (moisture content ∼ 0.12 wt.%). We investigated the effect of moisture and moisture containing activated carbon (AC) on the foam expansion ratio, cell morphology, and PET resin degradation and crystallization properties. Controlled-hydrolysis increased the melt-flow rate of PET resin (intrinsic viscosity: 0.52 to 0.54 dL/g) without losing crystallinity, and thus the PET foams possess better tensile properties (∼2 MPa stress and ∼100% strain) and higher thermal stability (>200°C) than chemically modified PET foams. The foam density could be made as low as ∼ 0.15 g/cm3 using a lab scale twin-screw extruder. A strand array die was also designed to produce plate-shaped foam samples. AC allowed easier control of the moisture content and delayed resin degradation in extrusion. Both AC and micrographite (mGr) could stabilize the PET foam morphology in extrusion and serve as good infrared attenuation agents (IAAs) in a simulated housing thermal insulation experiment.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"71 1\",\"pages\":\"695 - 716\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955X20952751\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X20952751","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Carbon particulate and controlled-hydrolysis assisted extrusion foaming of semi-crystalline polyethylene terephthalate for the enhanced thermal insulation property
This work presents a facile method to produce low-density PET foams using pristine semi-crystalline resin by moisture-induced controlled-hydrolysis in a tight processing window (moisture content ∼ 0.12 wt.%). We investigated the effect of moisture and moisture containing activated carbon (AC) on the foam expansion ratio, cell morphology, and PET resin degradation and crystallization properties. Controlled-hydrolysis increased the melt-flow rate of PET resin (intrinsic viscosity: 0.52 to 0.54 dL/g) without losing crystallinity, and thus the PET foams possess better tensile properties (∼2 MPa stress and ∼100% strain) and higher thermal stability (>200°C) than chemically modified PET foams. The foam density could be made as low as ∼ 0.15 g/cm3 using a lab scale twin-screw extruder. A strand array die was also designed to produce plate-shaped foam samples. AC allowed easier control of the moisture content and delayed resin degradation in extrusion. Both AC and micrographite (mGr) could stabilize the PET foam morphology in extrusion and serve as good infrared attenuation agents (IAAs) in a simulated housing thermal insulation experiment.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.