自愈水泥的研究进展

G. Kordas
{"title":"自愈水泥的研究进展","authors":"G. Kordas","doi":"10.3390/nanomanufacturing3030021","DOIUrl":null,"url":null,"abstract":"The self-healing of cementitious materials can be achieved by precipitation of calcium carbonate through the enzymatic hydrolysis of urea. When a crack appears in cement, the damage can be repaired by allowing bacteria to encounter the water seeping through the crack. This forms a calcium carbonate, which heals the cracks. This occurs because microorganisms begin metabolizing and precipitating the mineral, healing the damage caused by the crack. Then, bacteria are incorporated into various containers, which release microorganisms by crushing, leading to the precipitation of calcium carbonate. In addition, this paper references the superabsorbent polymers (SAP) used for self-healing and hybrid organic-inorganic core–shell SAPs, a recently developed, state-of-the-art self-healing technology for cementitious materials.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Healing Cement: A Review\",\"authors\":\"G. Kordas\",\"doi\":\"10.3390/nanomanufacturing3030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-healing of cementitious materials can be achieved by precipitation of calcium carbonate through the enzymatic hydrolysis of urea. When a crack appears in cement, the damage can be repaired by allowing bacteria to encounter the water seeping through the crack. This forms a calcium carbonate, which heals the cracks. This occurs because microorganisms begin metabolizing and precipitating the mineral, healing the damage caused by the crack. Then, bacteria are incorporated into various containers, which release microorganisms by crushing, leading to the precipitation of calcium carbonate. In addition, this paper references the superabsorbent polymers (SAP) used for self-healing and hybrid organic-inorganic core–shell SAPs, a recently developed, state-of-the-art self-healing technology for cementitious materials.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/nanomanufacturing3030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

胶凝材料的自愈可以通过酶解尿素沉淀碳酸钙来实现。当水泥出现裂缝时,可以通过让细菌接触从裂缝中渗出的水来修复损坏。这就形成了碳酸钙,可以修复裂缝。这是因为微生物开始代谢和沉淀矿物质,愈合裂缝造成的损害。然后,将细菌放入各种容器中,这些容器通过破碎释放出微生物,导致碳酸钙的沉淀。此外,本文还引用了用于自修复的高吸水性聚合物(SAP)和最近开发的最先进的胶凝材料自修复技术——有机-无机核-壳复合聚合物(SAP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Healing Cement: A Review
The self-healing of cementitious materials can be achieved by precipitation of calcium carbonate through the enzymatic hydrolysis of urea. When a crack appears in cement, the damage can be repaired by allowing bacteria to encounter the water seeping through the crack. This forms a calcium carbonate, which heals the cracks. This occurs because microorganisms begin metabolizing and precipitating the mineral, healing the damage caused by the crack. Then, bacteria are incorporated into various containers, which release microorganisms by crushing, leading to the precipitation of calcium carbonate. In addition, this paper references the superabsorbent polymers (SAP) used for self-healing and hybrid organic-inorganic core–shell SAPs, a recently developed, state-of-the-art self-healing technology for cementitious materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
期刊最新文献
Fabrication of Microstructure Arrays via Localized Electrochemical Deposition Super-Resolution by Localized Plasmonic Structured Illumination Microscopy Using Self-Assembled Nanoparticle Substrates Fluorescence-Based Calibration Model for In-Situ Measurement of Micro-scaled Lubricant Thickness Distribution at Indentation Interface Experimental Study of Electrical-Assisted Nanomachining of Monocrystalline Copper Using Customized Tungsten Tip A New Kind of Atomic Force Microscopy Scan Control Enabled by Artificial Intelligence: Concept for Achieving Tip and Sample Safety Through Asymmetric Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1