勘探中的被动控制和度量拓扑规划

Michael T. Ohradzansky, Andrew B. Mills, Eugene R. Rush, Danny G. Riley, E. Frew, J. Humbert
{"title":"勘探中的被动控制和度量拓扑规划","authors":"Michael T. Ohradzansky, Andrew B. Mills, Eugene R. Rush, Danny G. Riley, E. Frew, J. Humbert","doi":"10.1109/ICRA40945.2020.9197381","DOIUrl":null,"url":null,"abstract":"Autonomous navigation in unknown environments with the intent of exploring all traversable areas is a significant challenge for robotic platforms. In this paper, a simple yet reliable method for exploring unknown environments is presented based on bio-inspired reactive control and metric-topological planning. The reactive control algorithm is modeled after the spatial decomposition of wide and small-field patterns of optic flow in the insect visuomotor system. Centering behaviour and small obstacle detection and avoidance are achieved through wide-field integration and Fourier residual analysis of instantaneous measured nearness respectively. A topological graph is estimated using image processing techniques on a continuous occupancy grid. Node paths are rapidly generated to navigate to the nearest unexplored edge in the graph. It is shown through rigorous field-testing that the proposed control and planning method is robust, reliable, and computationally efficient.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"4073-4079"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Reactive Control and Metric-Topological Planning for Exploration\",\"authors\":\"Michael T. Ohradzansky, Andrew B. Mills, Eugene R. Rush, Danny G. Riley, E. Frew, J. Humbert\",\"doi\":\"10.1109/ICRA40945.2020.9197381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation in unknown environments with the intent of exploring all traversable areas is a significant challenge for robotic platforms. In this paper, a simple yet reliable method for exploring unknown environments is presented based on bio-inspired reactive control and metric-topological planning. The reactive control algorithm is modeled after the spatial decomposition of wide and small-field patterns of optic flow in the insect visuomotor system. Centering behaviour and small obstacle detection and avoidance are achieved through wide-field integration and Fourier residual analysis of instantaneous measured nearness respectively. A topological graph is estimated using image processing techniques on a continuous occupancy grid. Node paths are rapidly generated to navigate to the nearest unexplored edge in the graph. It is shown through rigorous field-testing that the proposed control and planning method is robust, reliable, and computationally efficient.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"4073-4079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在未知环境中探索所有可穿越区域的自主导航是机器人平台面临的重大挑战。本文提出了一种基于仿生反应控制和度量拓扑规划的探索未知环境的简单而可靠的方法。对昆虫视觉运动系统中的宽视场和小视场光流模式进行空间分解,建立了响应式控制算法模型。分别通过宽场积分和瞬时测量接近度的傅里叶残差分析实现定心行为和小障碍物检测与避障。在连续占用网格上使用图像处理技术估计拓扑图。快速生成节点路径,以导航到图中最近的未探索边缘。通过严格的现场测试表明,所提出的控制和规划方法具有鲁棒性、可靠性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reactive Control and Metric-Topological Planning for Exploration
Autonomous navigation in unknown environments with the intent of exploring all traversable areas is a significant challenge for robotic platforms. In this paper, a simple yet reliable method for exploring unknown environments is presented based on bio-inspired reactive control and metric-topological planning. The reactive control algorithm is modeled after the spatial decomposition of wide and small-field patterns of optic flow in the insect visuomotor system. Centering behaviour and small obstacle detection and avoidance are achieved through wide-field integration and Fourier residual analysis of instantaneous measured nearness respectively. A topological graph is estimated using image processing techniques on a continuous occupancy grid. Node paths are rapidly generated to navigate to the nearest unexplored edge in the graph. It is shown through rigorous field-testing that the proposed control and planning method is robust, reliable, and computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1