用极值理论预测双相Ti-6Al-4V最大疲劳指标参数

T. Gu, Krzysztof S. Stopka, C. Xu, D. McDowell
{"title":"用极值理论预测双相Ti-6Al-4V最大疲劳指标参数","authors":"T. Gu, Krzysztof S. Stopka, C. Xu, D. McDowell","doi":"10.2139/ssrn.3499072","DOIUrl":null,"url":null,"abstract":"Fatigue Indicator Parameters (FIPs) based on the cyclic plastic strain are used as surrogate measures of the driving force for fatigue crack formation. For a given microstructure, the Extreme Value Distribution (EVD) of FIPs can be populated using results of a number of digital Statistical Volume Element (SVE) instantiations analyzed by the crystal plasticity finite element method. The number of microstructure instantiations affects the maximum FIPs computed. To predict the maximum FIPs in a large volume of material using simulation results from a limited number of SVEs, we proposed a statistical approach based on extreme value theory. The predicted maximum FIP values are compared directly to simulation results of 1000 SVEs to validate the proposed method for duplex Ti-6Al-4V. It is shown that simulations of only 100 SVEs suffice to identify the statistical information for a reliable prediction of the maximum FIPs in polycrystalline duplex Ti-6Al-4V with initial random texture.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Maximum Fatigue Indicator Parameters for Duplex Ti-6Al-4V Using Extreme Value Theory\",\"authors\":\"T. Gu, Krzysztof S. Stopka, C. Xu, D. McDowell\",\"doi\":\"10.2139/ssrn.3499072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue Indicator Parameters (FIPs) based on the cyclic plastic strain are used as surrogate measures of the driving force for fatigue crack formation. For a given microstructure, the Extreme Value Distribution (EVD) of FIPs can be populated using results of a number of digital Statistical Volume Element (SVE) instantiations analyzed by the crystal plasticity finite element method. The number of microstructure instantiations affects the maximum FIPs computed. To predict the maximum FIPs in a large volume of material using simulation results from a limited number of SVEs, we proposed a statistical approach based on extreme value theory. The predicted maximum FIP values are compared directly to simulation results of 1000 SVEs to validate the proposed method for duplex Ti-6Al-4V. It is shown that simulations of only 100 SVEs suffice to identify the statistical information for a reliable prediction of the maximum FIPs in polycrystalline duplex Ti-6Al-4V with initial random texture.\",\"PeriodicalId\":18300,\"journal\":{\"name\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3499072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3499072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用基于循环塑性应变的疲劳指示参数(FIPs)作为疲劳裂纹形成驱动力的替代度量。对于给定的微观结构,可以利用晶体塑性有限元方法分析的数字统计体积元(SVE)实例的结果填充FIPs的极值分布(EVD)。微观结构实例化的数量影响计算的最大FIPs。为了利用有限数量SVEs的模拟结果预测大量材料中的最大FIPs,我们提出了一种基于极值理论的统计方法。将预测的最大FIP值直接与1000个SVEs的仿真结果进行比较,以验证所提出的双工Ti-6Al-4V方法。结果表明,仅对100个SVEs进行模拟就足以确定统计信息,从而可靠地预测具有初始随机织构的多晶双相Ti-6Al-4V的最大FIPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Maximum Fatigue Indicator Parameters for Duplex Ti-6Al-4V Using Extreme Value Theory
Fatigue Indicator Parameters (FIPs) based on the cyclic plastic strain are used as surrogate measures of the driving force for fatigue crack formation. For a given microstructure, the Extreme Value Distribution (EVD) of FIPs can be populated using results of a number of digital Statistical Volume Element (SVE) instantiations analyzed by the crystal plasticity finite element method. The number of microstructure instantiations affects the maximum FIPs computed. To predict the maximum FIPs in a large volume of material using simulation results from a limited number of SVEs, we proposed a statistical approach based on extreme value theory. The predicted maximum FIP values are compared directly to simulation results of 1000 SVEs to validate the proposed method for duplex Ti-6Al-4V. It is shown that simulations of only 100 SVEs suffice to identify the statistical information for a reliable prediction of the maximum FIPs in polycrystalline duplex Ti-6Al-4V with initial random texture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating a Methodology to Train Manufacturing SMEs: The Lift Europe Case Scenario-based Simulation for Energy Optimization in Learning Factory Environments Rod Eutectic Growth of Al-Al 3Sc in Al-2 Wt. % Sc Undercooled Melt Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery Designing an Improved Structure of the Tool for Repairing the Brake Pipe Connectors in Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1