预训练深度网络后更快的强化学习来预测状态动态

C. Anderson, Minwoo Lee, D. Elliott
{"title":"预训练深度网络后更快的强化学习来预测状态动态","authors":"C. Anderson, Minwoo Lee, D. Elliott","doi":"10.1109/IJCNN.2015.7280824","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"50 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Faster reinforcement learning after pretraining deep networks to predict state dynamics\",\"authors\":\"C. Anderson, Minwoo Lee, D. Elliott\",\"doi\":\"10.1109/IJCNN.2015.7280824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"50 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

最近出现了深度学习算法,以无监督的方式预训练神经网络的隐藏层,从而在大型分类问题上取得了最先进的性能。这些方法也可以预训练用于强化学习的网络。然而,这忽略了通过状态、动作、新状态元组的持续序列存在于强化学习范式中的附加信息。本文证明,学习状态动力学的预测模型可以产生预训练的隐藏层结构,从而减少解决强化学习问题所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faster reinforcement learning after pretraining deep networks to predict state dynamics
Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1