{"title":"预训练深度网络后更快的强化学习来预测状态动态","authors":"C. Anderson, Minwoo Lee, D. Elliott","doi":"10.1109/IJCNN.2015.7280824","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"50 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Faster reinforcement learning after pretraining deep networks to predict state dynamics\",\"authors\":\"C. Anderson, Minwoo Lee, D. Elliott\",\"doi\":\"10.1109/IJCNN.2015.7280824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"50 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Faster reinforcement learning after pretraining deep networks to predict state dynamics
Deep learning algorithms have recently appeared that pretrain hidden layers of neural networks in unsupervised ways, leading to state-of-the-art performance on large classification problems. These methods can also pretrain networks used for reinforcement learning. However, this ignores the additional information that exists in a reinforcement learning paradigm via the ongoing sequence of state, action, new state tuples. This paper demonstrates that learning a predictive model of state dynamics can result in a pretrained hidden layer structure that reduces the time needed to solve reinforcement learning problems.