{"title":"带插管的水平轴流涡轮叶片截面性能分析","authors":"P. Kundu, A. De","doi":"10.1177/14750902231185807","DOIUrl":null,"url":null,"abstract":"Generating more usable power annually from the river and tidal currents is essential to improving cost-effectiveness. Among various alternative options, the performance improvement of the blade foil has been considered in this work. When the fluid over the blade surface loses kinetic energy, flow separation occurs. The lift forces are reduced by flow separation, which finally results in less power production by the horizontal axis current turbine. To extract more power, it is necessary to overcome this flow separation. This paper presents a passive flow control method using tubes at regular intervals on the blade section to improve its performance considering its application on a horizontal axis current turbine. The tube inlet and outlet positions are determined by analyzing the force coefficients, glide ratio, and stall angle for a specific angle of attack. Finally, the performance characteristics are compared between the baseline and the modified hydrofoil. The maximum lift coefficient of the hydrofoil is increased by 15.7%. Also, the maximum glide ratios are considerably increased beyond the stall of the baseline profile. From the numerical results, it can be concluded that tubes inserted at regular intervals on the hydrofoil significantly increase its performance at a higher angle of attack.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a horizontal axis current turbine blade section with inserted tube\",\"authors\":\"P. Kundu, A. De\",\"doi\":\"10.1177/14750902231185807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating more usable power annually from the river and tidal currents is essential to improving cost-effectiveness. Among various alternative options, the performance improvement of the blade foil has been considered in this work. When the fluid over the blade surface loses kinetic energy, flow separation occurs. The lift forces are reduced by flow separation, which finally results in less power production by the horizontal axis current turbine. To extract more power, it is necessary to overcome this flow separation. This paper presents a passive flow control method using tubes at regular intervals on the blade section to improve its performance considering its application on a horizontal axis current turbine. The tube inlet and outlet positions are determined by analyzing the force coefficients, glide ratio, and stall angle for a specific angle of attack. Finally, the performance characteristics are compared between the baseline and the modified hydrofoil. The maximum lift coefficient of the hydrofoil is increased by 15.7%. Also, the maximum glide ratios are considerably increased beyond the stall of the baseline profile. From the numerical results, it can be concluded that tubes inserted at regular intervals on the hydrofoil significantly increase its performance at a higher angle of attack.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231185807\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231185807","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Performance analysis of a horizontal axis current turbine blade section with inserted tube
Generating more usable power annually from the river and tidal currents is essential to improving cost-effectiveness. Among various alternative options, the performance improvement of the blade foil has been considered in this work. When the fluid over the blade surface loses kinetic energy, flow separation occurs. The lift forces are reduced by flow separation, which finally results in less power production by the horizontal axis current turbine. To extract more power, it is necessary to overcome this flow separation. This paper presents a passive flow control method using tubes at regular intervals on the blade section to improve its performance considering its application on a horizontal axis current turbine. The tube inlet and outlet positions are determined by analyzing the force coefficients, glide ratio, and stall angle for a specific angle of attack. Finally, the performance characteristics are compared between the baseline and the modified hydrofoil. The maximum lift coefficient of the hydrofoil is increased by 15.7%. Also, the maximum glide ratios are considerably increased beyond the stall of the baseline profile. From the numerical results, it can be concluded that tubes inserted at regular intervals on the hydrofoil significantly increase its performance at a higher angle of attack.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.