Worashorn Lattiwongsakorn, Natpat Jansaka, S. Piyamongkol, T. Pantasri, T. Tongsong, Wanwisa Suriya, W. Piyamongkol
{"title":"利用多重荧光PCR和mini -测序技术成功进行β -地中海贫血(c.17A>T突变)-Hb E病植入前基因检测策略","authors":"Worashorn Lattiwongsakorn, Natpat Jansaka, S. Piyamongkol, T. Pantasri, T. Tongsong, Wanwisa Suriya, W. Piyamongkol","doi":"10.15296/ijwhr.2023.11","DOIUrl":null,"url":null,"abstract":"Objectives: Hemoglobin E disease, c.26G>A variant of beta-globin gene, is the most common hemoglobinopathy in Asia. Compound heterozygotes inheriting Hb E disease and beta-thalassemia generate beta-thalassemia-Hb E disease with severe anemia. This study aimed to develop a pre-implantation genetic testing for monogenic disorders (PGT-M) protocol for beta–thalassemia (c.17A>T mutation)-Hb E disease (c.26G>A mutation) using multiplex fluorescent polymerase chain reaction (PCR) and mini-sequencing. Materials and Methods: bthalw1 primers were used to amplify a beta-globin gene fragment covering both mutations, i.e. beta– thalassemia (c.17A>T) and Hb E disease. D21S11 microsatellite marker was included for contamination detection. Novel mini-sequencing primers were designed and tested for detection of both mutations. Results: Pre-clinical work up of the optimized PGT-M protocol using 20 single buccal cells of a heterozygous subject showed 100% amplification efficiency and 0% allele drop out (ADO) rate for both primers. In clinical PGT-M cycle, 15 embryos were subjected to biopsy. The results showed two normal, one heterozygous for beta-thalassemia, six heterozygous for Hb E disease, one affected for beta-thalassemia-Hb E disease and five with ambiguous results. Two normally diagnosed embryos were chosen for transfer, one singleton pregnancy was obtained. A healthy baby boy was resulted. Postnatal testing confirmed PGT results. Conclusions: Novel PGT-M protocols for beta-thalassemia-Hb E disease using multiplex fluorescent PCR and mini-sequencing were developed and described here. The protocol was applied in a clinical PGT-M cycle and gave rise to one successful pregnancy and consequently a healthy baby boy. Mini-sequencing was proved to be rapid, accurate and cost-effective protocol for PGT-M.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successful Strategy of Pre-implantation Genetic Testing for Beta-Thalassemia (c.17A>T Mutation)-Hb E Disease Using Multiplex Fluorescent PCR and Mini-Sequencing\",\"authors\":\"Worashorn Lattiwongsakorn, Natpat Jansaka, S. Piyamongkol, T. Pantasri, T. Tongsong, Wanwisa Suriya, W. Piyamongkol\",\"doi\":\"10.15296/ijwhr.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: Hemoglobin E disease, c.26G>A variant of beta-globin gene, is the most common hemoglobinopathy in Asia. Compound heterozygotes inheriting Hb E disease and beta-thalassemia generate beta-thalassemia-Hb E disease with severe anemia. This study aimed to develop a pre-implantation genetic testing for monogenic disorders (PGT-M) protocol for beta–thalassemia (c.17A>T mutation)-Hb E disease (c.26G>A mutation) using multiplex fluorescent polymerase chain reaction (PCR) and mini-sequencing. Materials and Methods: bthalw1 primers were used to amplify a beta-globin gene fragment covering both mutations, i.e. beta– thalassemia (c.17A>T) and Hb E disease. D21S11 microsatellite marker was included for contamination detection. Novel mini-sequencing primers were designed and tested for detection of both mutations. Results: Pre-clinical work up of the optimized PGT-M protocol using 20 single buccal cells of a heterozygous subject showed 100% amplification efficiency and 0% allele drop out (ADO) rate for both primers. In clinical PGT-M cycle, 15 embryos were subjected to biopsy. The results showed two normal, one heterozygous for beta-thalassemia, six heterozygous for Hb E disease, one affected for beta-thalassemia-Hb E disease and five with ambiguous results. Two normally diagnosed embryos were chosen for transfer, one singleton pregnancy was obtained. A healthy baby boy was resulted. Postnatal testing confirmed PGT results. Conclusions: Novel PGT-M protocols for beta-thalassemia-Hb E disease using multiplex fluorescent PCR and mini-sequencing were developed and described here. The protocol was applied in a clinical PGT-M cycle and gave rise to one successful pregnancy and consequently a healthy baby boy. Mini-sequencing was proved to be rapid, accurate and cost-effective protocol for PGT-M.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15296/ijwhr.2023.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15296/ijwhr.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Successful Strategy of Pre-implantation Genetic Testing for Beta-Thalassemia (c.17A>T Mutation)-Hb E Disease Using Multiplex Fluorescent PCR and Mini-Sequencing
Objectives: Hemoglobin E disease, c.26G>A variant of beta-globin gene, is the most common hemoglobinopathy in Asia. Compound heterozygotes inheriting Hb E disease and beta-thalassemia generate beta-thalassemia-Hb E disease with severe anemia. This study aimed to develop a pre-implantation genetic testing for monogenic disorders (PGT-M) protocol for beta–thalassemia (c.17A>T mutation)-Hb E disease (c.26G>A mutation) using multiplex fluorescent polymerase chain reaction (PCR) and mini-sequencing. Materials and Methods: bthalw1 primers were used to amplify a beta-globin gene fragment covering both mutations, i.e. beta– thalassemia (c.17A>T) and Hb E disease. D21S11 microsatellite marker was included for contamination detection. Novel mini-sequencing primers were designed and tested for detection of both mutations. Results: Pre-clinical work up of the optimized PGT-M protocol using 20 single buccal cells of a heterozygous subject showed 100% amplification efficiency and 0% allele drop out (ADO) rate for both primers. In clinical PGT-M cycle, 15 embryos were subjected to biopsy. The results showed two normal, one heterozygous for beta-thalassemia, six heterozygous for Hb E disease, one affected for beta-thalassemia-Hb E disease and five with ambiguous results. Two normally diagnosed embryos were chosen for transfer, one singleton pregnancy was obtained. A healthy baby boy was resulted. Postnatal testing confirmed PGT results. Conclusions: Novel PGT-M protocols for beta-thalassemia-Hb E disease using multiplex fluorescent PCR and mini-sequencing were developed and described here. The protocol was applied in a clinical PGT-M cycle and gave rise to one successful pregnancy and consequently a healthy baby boy. Mini-sequencing was proved to be rapid, accurate and cost-effective protocol for PGT-M.