原子内部:在网络的网络中排名

Jingchao Ni, Hanghang Tong, Wei Fan, Xiang Zhang
{"title":"原子内部:在网络的网络中排名","authors":"Jingchao Ni, Hanghang Tong, Wei Fan, Xiang Zhang","doi":"10.1145/2623330.2623643","DOIUrl":null,"url":null,"abstract":"Networks are prevalent and have posed many fascinating research questions. How can we spot similar users, e.g., virtual identical twins, in Cleveland for a New Yorker? Given a query disease, how can we prioritize its candidate genes by incorporating the tissue-specific protein interaction networks of those similar diseases? In most, if not all, of the existing network ranking methods, the nodes are the ranking objects with the finest granularity. In this paper, we propose a new network data model, a Network of Networks (NoN), where each node of the main network itself can be further represented as another (domain-specific) network. This new data model enables to compare the nodes in a broader context and rank them at a finer granularity. Moreover, such an NoN model enables much more efficient search when the ranking targets reside in a certain domain-specific network. We formulate ranking on NoN as a regularized optimization problem; propose efficient algorithms and provide theoretical analysis, such as optimality, convergence, complexity and equivalence. Extensive experimental evaluations demonstrate the effectiveness and the efficiency of our methods.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Inside the atoms: ranking on a network of networks\",\"authors\":\"Jingchao Ni, Hanghang Tong, Wei Fan, Xiang Zhang\",\"doi\":\"10.1145/2623330.2623643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks are prevalent and have posed many fascinating research questions. How can we spot similar users, e.g., virtual identical twins, in Cleveland for a New Yorker? Given a query disease, how can we prioritize its candidate genes by incorporating the tissue-specific protein interaction networks of those similar diseases? In most, if not all, of the existing network ranking methods, the nodes are the ranking objects with the finest granularity. In this paper, we propose a new network data model, a Network of Networks (NoN), where each node of the main network itself can be further represented as another (domain-specific) network. This new data model enables to compare the nodes in a broader context and rank them at a finer granularity. Moreover, such an NoN model enables much more efficient search when the ranking targets reside in a certain domain-specific network. We formulate ranking on NoN as a regularized optimization problem; propose efficient algorithms and provide theoretical analysis, such as optimality, convergence, complexity and equivalence. Extensive experimental evaluations demonstrate the effectiveness and the efficiency of our methods.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

网络是普遍存在的,并提出了许多有趣的研究问题。我们如何为一个纽约人在克利夫兰发现相似的用户,例如虚拟同卵双胞胎?给定一种疾病,我们如何通过结合这些类似疾病的组织特异性蛋白质相互作用网络来确定其候选基因的优先级?在大多数(如果不是全部的话)现有的网络排序方法中,节点是具有最细粒度的排序对象。在本文中,我们提出了一种新的网络数据模型,即网络的网络(NoN),其中主网络的每个节点本身可以进一步表示为另一个(特定于领域的)网络。这个新的数据模型支持在更广泛的上下文中比较节点,并以更细的粒度对它们进行排序。此外,当排序目标位于某个特定领域的网络中时,这种NoN模型可以实现更高效的搜索。我们将NoN上的排序问题表述为正则化优化问题;提出有效的算法并提供理论分析,如最优性、收敛性、复杂性和等价性。大量的实验评估证明了我们的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inside the atoms: ranking on a network of networks
Networks are prevalent and have posed many fascinating research questions. How can we spot similar users, e.g., virtual identical twins, in Cleveland for a New Yorker? Given a query disease, how can we prioritize its candidate genes by incorporating the tissue-specific protein interaction networks of those similar diseases? In most, if not all, of the existing network ranking methods, the nodes are the ranking objects with the finest granularity. In this paper, we propose a new network data model, a Network of Networks (NoN), where each node of the main network itself can be further represented as another (domain-specific) network. This new data model enables to compare the nodes in a broader context and rank them at a finer granularity. Moreover, such an NoN model enables much more efficient search when the ranking targets reside in a certain domain-specific network. We formulate ranking on NoN as a regularized optimization problem; propose efficient algorithms and provide theoretical analysis, such as optimality, convergence, complexity and equivalence. Extensive experimental evaluations demonstrate the effectiveness and the efficiency of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1