320℃压水堆PW中锌离子对600合金钝化和表面膜影响的电镜和电化学阻抗谱研究

Yifan Jiang, K. Bustillo, T. Devine
{"title":"320℃压水堆PW中锌离子对600合金钝化和表面膜影响的电镜和电化学阻抗谱研究","authors":"Yifan Jiang, K. Bustillo, T. Devine","doi":"10.3390/cmd4010005","DOIUrl":null,"url":null,"abstract":"Aqueous zinc ions lower the corrosion rate of Alloy 600, which helps lower the radiation dose rate in pressurized water reactors (PWRs). The influence of zinc on the electrochemical behavior of Alloy 600 in PWR primary water (PW) at 320 °C was investigated using a combination of electron microscopy and electrochemical impedance spectroscopy (EIS). Secondary electron microscopy (SEM) and scanning transmission electron microscopy (STEM)/energy-dispersive X-ray spectroscopy (EDS) indicated duplex surface films were formed on the Alloy 600 in PWR PW with and without 100 ppb of zinc. There was no effect of zinc on the chromium-rich inner layer (IL) (of Cr2O3 and/or CrOOH). Zinc had a significant effect on the outer layer (OL). In the absence of zinc, a highly porous OL formed that was mostly composed of nickel oxide whiskers. In the presence of zinc, a zinc-containing, denser OL of oxide was formed. The EIS data were acquired in laboratory simulated PWR PW at 320 °C with and without 100 ppb zinc. The spectra were measured at nine different values of potential that spanned a 500 mV-wide range. The EIS indicated there was no effect of zinc on the oxidation rate of metals at the alloy/IL interface nor on the transport of ions through the IL. Zinc lowered the corrosion rate because the dense OL inhibited the release of nickel ions from the IL into the solution.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation via Electron Microscopy and Electrochemical Impedance Spectroscopy of the Effect of Aqueous Zinc Ions on Passivity and the Surface Films of Alloy 600 in PWR PW at 320 °C\",\"authors\":\"Yifan Jiang, K. Bustillo, T. Devine\",\"doi\":\"10.3390/cmd4010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc ions lower the corrosion rate of Alloy 600, which helps lower the radiation dose rate in pressurized water reactors (PWRs). The influence of zinc on the electrochemical behavior of Alloy 600 in PWR primary water (PW) at 320 °C was investigated using a combination of electron microscopy and electrochemical impedance spectroscopy (EIS). Secondary electron microscopy (SEM) and scanning transmission electron microscopy (STEM)/energy-dispersive X-ray spectroscopy (EDS) indicated duplex surface films were formed on the Alloy 600 in PWR PW with and without 100 ppb of zinc. There was no effect of zinc on the chromium-rich inner layer (IL) (of Cr2O3 and/or CrOOH). Zinc had a significant effect on the outer layer (OL). In the absence of zinc, a highly porous OL formed that was mostly composed of nickel oxide whiskers. In the presence of zinc, a zinc-containing, denser OL of oxide was formed. The EIS data were acquired in laboratory simulated PWR PW at 320 °C with and without 100 ppb zinc. The spectra were measured at nine different values of potential that spanned a 500 mV-wide range. The EIS indicated there was no effect of zinc on the oxidation rate of metals at the alloy/IL interface nor on the transport of ions through the IL. Zinc lowered the corrosion rate because the dense OL inhibited the release of nickel ions from the IL into the solution.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd4010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd4010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

含水锌离子降低了合金600的腐蚀速率,有助于降低压水堆(pwr)中的辐射剂量率。采用电子显微镜和电化学阻抗谱(EIS)相结合的方法研究了锌对600合金在320℃压水堆一次水(PW)中电化学行为的影响。二次电子显微镜(SEM)、扫描透射电子显微镜(STEM)和能量色散x射线能谱(EDS)分析结果表明,在加锌和不加锌的情况下,合金600在PWR PW中形成了双相表面膜。锌对Cr2O3和/或CrOOH的富铬内层(IL)没有影响。锌对外层(OL)有显著影响。在没有锌的情况下,形成了一个高度多孔的OL,主要由氧化镍晶须组成。在锌的存在下,形成了一种含锌的致密的氧化物。EIS数据是在实验室模拟的压水堆PW中获得的,温度为320°C,含锌和不含锌均为100 ppb。光谱测量在9个不同的电位值,跨越500毫伏宽的范围。EIS表明,锌对合金/IL界面上金属的氧化速率没有影响,也没有影响离子通过IL的传输。锌降低了腐蚀速率,因为致密的OL抑制了镍离子从IL释放到溶液中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation via Electron Microscopy and Electrochemical Impedance Spectroscopy of the Effect of Aqueous Zinc Ions on Passivity and the Surface Films of Alloy 600 in PWR PW at 320 °C
Aqueous zinc ions lower the corrosion rate of Alloy 600, which helps lower the radiation dose rate in pressurized water reactors (PWRs). The influence of zinc on the electrochemical behavior of Alloy 600 in PWR primary water (PW) at 320 °C was investigated using a combination of electron microscopy and electrochemical impedance spectroscopy (EIS). Secondary electron microscopy (SEM) and scanning transmission electron microscopy (STEM)/energy-dispersive X-ray spectroscopy (EDS) indicated duplex surface films were formed on the Alloy 600 in PWR PW with and without 100 ppb of zinc. There was no effect of zinc on the chromium-rich inner layer (IL) (of Cr2O3 and/or CrOOH). Zinc had a significant effect on the outer layer (OL). In the absence of zinc, a highly porous OL formed that was mostly composed of nickel oxide whiskers. In the presence of zinc, a zinc-containing, denser OL of oxide was formed. The EIS data were acquired in laboratory simulated PWR PW at 320 °C with and without 100 ppb zinc. The spectra were measured at nine different values of potential that spanned a 500 mV-wide range. The EIS indicated there was no effect of zinc on the oxidation rate of metals at the alloy/IL interface nor on the transport of ions through the IL. Zinc lowered the corrosion rate because the dense OL inhibited the release of nickel ions from the IL into the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Influence of Isothermal Annealing in the 600 to 750 °C Range on the Degradation of SAF 2205 Duplex Stainless Steel Unraveling the Corrosion of the Ti–6Al–4V Orthopedic Alloy in Phosphate-Buffered Saline (PBS) Solution: Influence of Frequency and Potential Impact of the Delay Period between Electrochemical Hydrogen Charging and Tensile Testing on the Mechanical Properties of Mild Steel Mechanistic Analysis of Hydrogen Evolution Reaction on Stationary Polycrystalline Gold Electrodes in H2SO4 Solutions In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1