多任务控制软件的OS in - the - Loop验证

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Testing Verification & Reliability Pub Date : 2022-11-17 DOI:10.1002/stvr.1834
Yunja Choi
{"title":"多任务控制软件的OS in - the - Loop验证","authors":"Yunja Choi","doi":"10.1002/stvr.1834","DOIUrl":null,"url":null,"abstract":"Embedded control software that controls safety‐critical IoT devices requires systematic and comprehensive verification to ensure safe operation of the device. However, rigorous verification in this domain has not been feasible due to the high complexity of embedded control software, which is characterized by the frequent use of multi‐tasking, interrupts, and periodic alarms. Realizing that two major factors, scalability and exactness, are extremely difficult to achieve at the same time but critical for effective and efficient verification in this domain, this work introduces a domain‐specific compositional OS‐in‐the‐Loop (OiL) verification approach and sets out to push the boundary in achieving both factors. The suggested approach (1) models the behavior of the underlying operating system to limit the search space using the notion of controlled concurrency, (2) performs heterogeneous composition of controllers with the formal OS model to reduce verification complexity, and (3) utilizes state‐of‐the‐art verification techniques for the purpose of comprehensive verification up to a given search depth.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"127 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OS‐in‐the‐Loop verification for multi‐tasking control software\",\"authors\":\"Yunja Choi\",\"doi\":\"10.1002/stvr.1834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded control software that controls safety‐critical IoT devices requires systematic and comprehensive verification to ensure safe operation of the device. However, rigorous verification in this domain has not been feasible due to the high complexity of embedded control software, which is characterized by the frequent use of multi‐tasking, interrupts, and periodic alarms. Realizing that two major factors, scalability and exactness, are extremely difficult to achieve at the same time but critical for effective and efficient verification in this domain, this work introduces a domain‐specific compositional OS‐in‐the‐Loop (OiL) verification approach and sets out to push the boundary in achieving both factors. The suggested approach (1) models the behavior of the underlying operating system to limit the search space using the notion of controlled concurrency, (2) performs heterogeneous composition of controllers with the formal OS model to reduce verification complexity, and (3) utilizes state‐of‐the‐art verification techniques for the purpose of comprehensive verification up to a given search depth.\",\"PeriodicalId\":49506,\"journal\":{\"name\":\"Software Testing Verification & Reliability\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Testing Verification & Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/stvr.1834\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1834","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

控制安全关键型物联网设备的嵌入式控制软件需要系统和全面的验证,以确保设备的安全运行。然而,由于嵌入式控制软件的高度复杂性,其特点是频繁使用多任务、中断和定期报警,因此在该领域进行严格的验证是不可实现的。认识到两个主要因素,可扩展性和准确性,很难同时实现,但对于该领域的有效和高效验证至关重要,本工作引入了一种特定领域的组合OS - in - the - Loop (OiL)验证方法,并着手推动实现这两个因素的边界。建议的方法(1)使用受控并发的概念对底层操作系统的行为进行建模,以限制搜索空间;(2)使用正式的操作系统模型执行控制器的异构组合,以降低验证复杂性;(3)利用最先进的验证技术,在给定的搜索深度内进行全面验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OS‐in‐the‐Loop verification for multi‐tasking control software
Embedded control software that controls safety‐critical IoT devices requires systematic and comprehensive verification to ensure safe operation of the device. However, rigorous verification in this domain has not been feasible due to the high complexity of embedded control software, which is characterized by the frequent use of multi‐tasking, interrupts, and periodic alarms. Realizing that two major factors, scalability and exactness, are extremely difficult to achieve at the same time but critical for effective and efficient verification in this domain, this work introduces a domain‐specific compositional OS‐in‐the‐Loop (OiL) verification approach and sets out to push the boundary in achieving both factors. The suggested approach (1) models the behavior of the underlying operating system to limit the search space using the notion of controlled concurrency, (2) performs heterogeneous composition of controllers with the formal OS model to reduce verification complexity, and (3) utilizes state‐of‐the‐art verification techniques for the purpose of comprehensive verification up to a given search depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Testing Verification & Reliability
Software Testing Verification & Reliability 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it. The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software. The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to: -New criteria for software testing and verification -Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures -Model based testing -Formal verification techniques such as model-checking -Comparison of testing and verification techniques -Measurement of and metrics for testing, verification and reliability -Industrial experience with cutting edge techniques -Descriptions and evaluations of commercial and open-source software testing tools -Reliability modeling, measurement and application -Testing and verification of software security -Automated test data generation -Process issues and methods -Non-functional testing
期刊最新文献
Model‐based testing, test case prioritization and testing of virtual reality applications In vivo testing and integration of proving and testing Mutation testing optimisations using the Clang front‐end Semantic‐aware two‐phase test case prioritization for continuous integration Exploiting deep reinforcement learning and metamorphic testing to automatically test virtual reality applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1