基于稀疏学习的动态基因网络VAR模型的状态空间表示。

Kaname Kojima, R. Yamaguchi, S. Imoto, Mai Yamauchi, Masao Nagasaki, Ryo Yoshida, Teppei Shimamura, Kazuko Ueno, T. Higuchi, N. Gotoh, S. Miyano
{"title":"基于稀疏学习的动态基因网络VAR模型的状态空间表示。","authors":"Kaname Kojima, R. Yamaguchi, S. Imoto, Mai Yamauchi, Masao Nagasaki, Ryo Yoshida, Teppei Shimamura, Kazuko Ueno, T. Higuchi, N. Gotoh, S. Miyano","doi":"10.1142/9781848165786_0006","DOIUrl":null,"url":null,"abstract":"We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and lack of separation ability of observation and systems noises in the former method and the assumption of modularity of network structure in the latter method. However, in a simple implementation the proposed model requires the calculation of large inverse matrices in a large number of times during parameter estimation process based on EM algorithm. This limits the applicability of the proposed method to a relatively small gene set. We thus introduce a new calculation technique for EM algorithm that does not require the calculation of inverse matrices. The proposed method is applied to time course microarray data of lung cells treated by stimulating EGF receptors and dosing an anticancer drug, Gefitinib. By comparing the estimated network with the control network estimated using non-treated lung cells, perturbed genes by the anticancer drug could be found, whose up- and down-stream genes in the estimated networks may be related to side effects of the anticancer drug.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"17 1","pages":"56-68"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A state space representation of VAR models with sparse learning for dynamic gene networks.\",\"authors\":\"Kaname Kojima, R. Yamaguchi, S. Imoto, Mai Yamauchi, Masao Nagasaki, Ryo Yoshida, Teppei Shimamura, Kazuko Ueno, T. Higuchi, N. Gotoh, S. Miyano\",\"doi\":\"10.1142/9781848165786_0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and lack of separation ability of observation and systems noises in the former method and the assumption of modularity of network structure in the latter method. However, in a simple implementation the proposed model requires the calculation of large inverse matrices in a large number of times during parameter estimation process based on EM algorithm. This limits the applicability of the proposed method to a relatively small gene set. We thus introduce a new calculation technique for EM algorithm that does not require the calculation of inverse matrices. The proposed method is applied to time course microarray data of lung cells treated by stimulating EGF receptors and dosing an anticancer drug, Gefitinib. By comparing the estimated network with the control network estimated using non-treated lung cells, perturbed genes by the anticancer drug could be found, whose up- and down-stream genes in the estimated networks may be related to side effects of the anticancer drug.\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":\"17 1\",\"pages\":\"56-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848165786_0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种基于L1正则化的向量自回归模型的状态空间表示及其稀疏学习方法,以实现基于时程微阵列数据的动态基因网络的高效估计。该方法克服了矢量自回归模型和状态空间模型的不足;前一种方法采用等时间间隔假设,缺乏观测噪声与系统噪声的分离能力,后一种方法采用网络结构模块化假设。然而,在简单实现中,该模型需要在基于EM算法的参数估计过程中计算大量的逆矩阵。这限制了所提出的方法对相对较小的基因集的适用性。因此,我们为EM算法引入了一种不需要计算逆矩阵的新计算技术。该方法应用于通过刺激EGF受体和服用抗癌药物吉非替尼处理的肺细胞的时程微阵列数据。通过将估计的网络与未处理的肺细胞估计的控制网络进行比较,可以发现被抗癌药物干扰的基因,其在估计网络中的上下游基因可能与抗癌药物的副作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A state space representation of VAR models with sparse learning for dynamic gene networks.
We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and lack of separation ability of observation and systems noises in the former method and the assumption of modularity of network structure in the latter method. However, in a simple implementation the proposed model requires the calculation of large inverse matrices in a large number of times during parameter estimation process based on EM algorithm. This limits the applicability of the proposed method to a relatively small gene set. We thus introduce a new calculation technique for EM algorithm that does not require the calculation of inverse matrices. The proposed method is applied to time course microarray data of lung cells treated by stimulating EGF receptors and dosing an anticancer drug, Gefitinib. By comparing the estimated network with the control network estimated using non-treated lung cells, perturbed genes by the anticancer drug could be found, whose up- and down-stream genes in the estimated networks may be related to side effects of the anticancer drug.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1