{"title":"信息架构:使用k -均值聚类和最佳合并方法进行开放卡片分类数据分析","authors":"Sione Paea, C. Katsanos, Gabiriele Bulivou","doi":"10.1093/iwc/iwac022","DOIUrl":null,"url":null,"abstract":"\n Open card sorting is a well-established method for discovering how people understand and categorize information. This paper addresses the problem of quantitatively analyzing open card sorting data using the K-means algorithm. Although the K-means algorithm is effective, its results are too sensitive to initial category centers. Therefore, many approaches in the literature have focused on determining suitable initial centers. However, this is not always possible, especially when the number of categories is increased. This paper proposes an approach to improve the quality of the solution produced by the K-means for open card sort data analysis. Results show that the proposed initialization approach for K-means outperforms existing initialization methods, such as MaxMin, random initialization and K-means++. The proposed algorithm is applied to a real-world open card sorting dataset, and, unlike existing solutions in the literature, it can be used with any number of participants and cards.","PeriodicalId":50354,"journal":{"name":"Interacting with Computers","volume":"11 1","pages":"670-689"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Architecture: Using K-Means Clustering and the Best Merge Method for Open Card Sorting Data Analysis\",\"authors\":\"Sione Paea, C. Katsanos, Gabiriele Bulivou\",\"doi\":\"10.1093/iwc/iwac022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Open card sorting is a well-established method for discovering how people understand and categorize information. This paper addresses the problem of quantitatively analyzing open card sorting data using the K-means algorithm. Although the K-means algorithm is effective, its results are too sensitive to initial category centers. Therefore, many approaches in the literature have focused on determining suitable initial centers. However, this is not always possible, especially when the number of categories is increased. This paper proposes an approach to improve the quality of the solution produced by the K-means for open card sort data analysis. Results show that the proposed initialization approach for K-means outperforms existing initialization methods, such as MaxMin, random initialization and K-means++. The proposed algorithm is applied to a real-world open card sorting dataset, and, unlike existing solutions in the literature, it can be used with any number of participants and cards.\",\"PeriodicalId\":50354,\"journal\":{\"name\":\"Interacting with Computers\",\"volume\":\"11 1\",\"pages\":\"670-689\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interacting with Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/iwc/iwac022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacting with Computers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/iwc/iwac022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Information Architecture: Using K-Means Clustering and the Best Merge Method for Open Card Sorting Data Analysis
Open card sorting is a well-established method for discovering how people understand and categorize information. This paper addresses the problem of quantitatively analyzing open card sorting data using the K-means algorithm. Although the K-means algorithm is effective, its results are too sensitive to initial category centers. Therefore, many approaches in the literature have focused on determining suitable initial centers. However, this is not always possible, especially when the number of categories is increased. This paper proposes an approach to improve the quality of the solution produced by the K-means for open card sort data analysis. Results show that the proposed initialization approach for K-means outperforms existing initialization methods, such as MaxMin, random initialization and K-means++. The proposed algorithm is applied to a real-world open card sorting dataset, and, unlike existing solutions in the literature, it can be used with any number of participants and cards.
期刊介绍:
Interacting with Computers: The Interdisciplinary Journal of Human-Computer Interaction, is an official publication of BCS, The Chartered Institute for IT and the Interaction Specialist Group .
Interacting with Computers (IwC) was launched in 1987 by interaction to provide access to the results of research in the field of Human-Computer Interaction (HCI) - an increasingly crucial discipline within the Computer, Information, and Design Sciences. Now one of the most highly rated journals in the field, IwC has a strong and growing Impact Factor, and a high ranking and excellent indices (h-index, SNIP, SJR).