{"title":"并行执行概要","authors":"Zachary Benavides, Rajiv Gupta, X. Zhang","doi":"10.1145/2907294.2907311","DOIUrl":null,"url":null,"abstract":"Observing the relative behavior of an application's threads is critical to identifying performance bottlenecks and understanding their root causes. We present parallel execution profiles (PEPs), which capture the relative behavior of parallel threads in terms of the user selected code regions they execute. The user annotates the program to identify code regions of interest. The PEP divides the execution time of a multithreaded application into time intervals or a sequence of frames during which the code regions being executed in parallel by application threads remain the same. PEPs can be easily analyzed to compute execution times spent by the application in interesting behavior states. This helps user understand the severity of common performance problems such as excessive waiting on events by threads, threads contending for locks, and the presence of straggler threads.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel Execution Profiles\",\"authors\":\"Zachary Benavides, Rajiv Gupta, X. Zhang\",\"doi\":\"10.1145/2907294.2907311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observing the relative behavior of an application's threads is critical to identifying performance bottlenecks and understanding their root causes. We present parallel execution profiles (PEPs), which capture the relative behavior of parallel threads in terms of the user selected code regions they execute. The user annotates the program to identify code regions of interest. The PEP divides the execution time of a multithreaded application into time intervals or a sequence of frames during which the code regions being executed in parallel by application threads remain the same. PEPs can be easily analyzed to compute execution times spent by the application in interesting behavior states. This helps user understand the severity of common performance problems such as excessive waiting on events by threads, threads contending for locks, and the presence of straggler threads.\",\"PeriodicalId\":20515,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2907294.2907311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

观察应用程序线程的相对行为对于识别性能瓶颈和理解其根本原因至关重要。我们提供并行执行概要文件(pep),它根据用户选择的执行代码区域捕获并行线程的相对行为。用户注释程序以识别感兴趣的代码区域。PEP将多线程应用程序的执行时间划分为时间间隔或帧序列,在此期间,应用程序线程并行执行的代码区域保持不变。可以很容易地分析pep,以计算应用程序在有趣的行为状态下花费的执行时间。这有助于用户了解常见性能问题的严重程度,例如线程对事件的过度等待、线程争用锁以及存在离散线程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Execution Profiles
Observing the relative behavior of an application's threads is critical to identifying performance bottlenecks and understanding their root causes. We present parallel execution profiles (PEPs), which capture the relative behavior of parallel threads in terms of the user selected code regions they execute. The user annotates the program to identify code regions of interest. The PEP divides the execution time of a multithreaded application into time intervals or a sequence of frames during which the code regions being executed in parallel by application threads remain the same. PEPs can be easily analyzed to compute execution times spent by the application in interesting behavior states. This helps user understand the severity of common performance problems such as excessive waiting on events by threads, threads contending for locks, and the presence of straggler threads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote Lecture : Learning Representations: Opportunities for Parallel and Distributed Computing Keynote Lecture : Gradient compression for efficient distributed deep learning Keynote Lecture : Neural circuit policies Keynote Lecture : Towards Robust, Large-scale Concurrent and Distributed Programming The Supercomputer "Fugaku" and Arm-SVE enabled A64FX processor for energy-efficiency and sustained application performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1