N. Xu, M. Streeter, O. Ettlinger, H. Ahmed, S. Astbury, M. Borghesi, N. Bourgeois, C. Curry, S. Dann, N. Dover, T. Dzelzainis, V. Istokskaia, M. Gauthier, L. Giuffrida, G. Glenn, S. Glenzer, R. Gray, J. Green, G. Hicks, C. Hyland, M. King, B. Loughran, D. Margarone, O. McCusker, P. McKenna, C. Parisuaña, P. Parsons, C. Spindloe, D. Symes, F. Treffert, C. Palmer, Z. Najmudin
{"title":"用于高重复率激光驱动质子加速的多功能磁带驱动靶","authors":"N. Xu, M. Streeter, O. Ettlinger, H. Ahmed, S. Astbury, M. Borghesi, N. Bourgeois, C. Curry, S. Dann, N. Dover, T. Dzelzainis, V. Istokskaia, M. Gauthier, L. Giuffrida, G. Glenn, S. Glenzer, R. Gray, J. Green, G. Hicks, C. Hyland, M. King, B. Loughran, D. Margarone, O. McCusker, P. McKenna, C. Parisuaña, P. Parsons, C. Spindloe, D. Symes, F. Treffert, C. Palmer, Z. Najmudin","doi":"10.1017/hpl.2023.27","DOIUrl":null,"url":null,"abstract":"Abstract We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( \n$>$\n kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"34 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration\",\"authors\":\"N. Xu, M. Streeter, O. Ettlinger, H. Ahmed, S. Astbury, M. Borghesi, N. Bourgeois, C. Curry, S. Dann, N. Dover, T. Dzelzainis, V. Istokskaia, M. Gauthier, L. Giuffrida, G. Glenn, S. Glenzer, R. Gray, J. Green, G. Hicks, C. Hyland, M. King, B. Loughran, D. Margarone, O. McCusker, P. McKenna, C. Parisuaña, P. Parsons, C. Spindloe, D. Symes, F. Treffert, C. Palmer, Z. Najmudin\",\"doi\":\"10.1017/hpl.2023.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( \\n$>$\\n kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2023.27\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.27","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
Abstract We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers (
$>$
kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.